Přejít k hlavnímu obsahu
top

Bibliografie

Journal Article

The cone of supermodular games on finite distributive lattices

Grabisch M., Kroupa Tomáš

: Discrete Applied Mathematics vol.260, 1 (2019), p. 144-154

: GA16-12010S, GA ČR

: Supermodular/submodular function, Coalitional game, Polyhedral cone

: 10.1016/j.dam.2019.01.024

: http://library.utia.cas.cz/sepaarty/2019/MTR/kroupa-0503871.pdf

: https://www.sciencedirect.com/science/article/pii/S0166218X19300599

(eng): In this article we study supermodular functions on finite distributive lattices. Relaxing the assumption that the domain is a powerset of a finite set, we focus on geometrical properties of the polyhedral cone of such functions. Specifically, we generalize the criterion for extremality and study the face lattice of the supermodular cone. An explicit description of facets by the corresponding tight linear inequalities is provided.

: BA

: 10101