Přejít k hlavnímu obsahu
top

Bibliografie

Journal Article

Solving stress constrained problems in topology and material optimization

Kočvara Michal, Stingl M.

: Structural and Multidisciplinary Optimization vol.46, 1 (2012), p. 1-15

: CEZ:AV0Z10750506

: IAA100750802, GA AV ČR, 30717, EU FP6

: Topology optimization, Material Optimization, Stress based design, Nonlinear semidefinite programming

: 10.1007/s00158-012-0762-z

: http://library.utia.cas.cz/separaty/2013/MTR/kocvara-0421362.pdf

(eng): This article is a continuation of the paper /citet{kocvara-stingl-stress}. The aim is to describe numerical techniques for the solution of topology and material optimization problems with local stress constraints. In particular, we consider the topology optimization (variable thickness sheet or ``free sizing'') and the free material optimization problems. We will present an efficient algorithm for solving large scale instances of these problems. Examples will demonstrate the efficiency of the algorithm and the importance of the local stress constraints. In particular, we will argue that in certain topology optimization problems, the addition of stress constraints must necessarily lead not only to the change of optimal topology but also optimal geometry. Contrary to that, in material optimization problems the stress singularity is treated by the change in the optimal material properties.

: BA