Přejít k hlavnímu obsahu
top

Bibliografie

Journal Article

A complete-damage problem at small strains

Bouchitte G., Mielke A., Roubíček Tomáš

: Zeitschrift für angewandte Mathematik und Physik vol.60, 2 (2009), p. 205-236

: CEZ:AV0Z10750506

: IAA1075402, GA AV ČR

: Inelastic damage, small strain, variational inequality

: 10.1007/s00033-007-7064-0

: http://library.utia.cas.cz/separaty/2009/MTR/roubicek-a complete-damage problem at small strains.pdf

(eng): Damage of a linearly-responding material that can thus completely disintegrate is addressed at small strains. Using time-varying Dirichlet boundary conditions we set up a rate-independent evolution problem in multidimensional situations. The stored energy involves the gradient of the damage variable. This variable as well as the stress and energies are shown to be well defined even under complete damage, in contrast to displacement and strain. Existence of an energetic solution is proved, in particular, by detailed investigating the Gamma-limit of the stored energy and its dependence on boundary conditions. Eventually, the theory is illustrated on a one-dimensional example.

(cze): Článek s zabývá úlohou úplného poškození při malých přetvořeních.

: BA