Přejít k hlavnímu obsahu
top

Bibliografie

Journal Article

Projection-based Bayesian recursive estimation of ARX model with uniform innovations

Kárný Miroslav, Pavelková Lenka

: Systems and Control Letters vol.56, p. 646-655

: CEZ:AV0Z10750506

: 1ET100750401, GA AV ČR, 2C06001, GA MŠk, 1F43A/003/120, GA MDS

: ARX model, Bayesian recursive estimation, Uniform distribution

: http://dx.doi.org/10.1016/j.sysconle.2007.03.005

(eng): Autoregressive model with exogenous inputs (ARX) is a widely-used black-box type model underlying adaptive predictors and controllers. Its innovations, stochastic unobserved stimulus of the model, are white, zero mean with time-invariant variance. Mostly, the innovations are assumed to be normal. It induces least squares as the adequate estimation procedure. Light tails of the normal distribution imply that its unbounded support can often be accepted as a reasonable approximate description of physical quantities, which are mostly bounded. In some case, however, this approximation is too crude or does not fit subsequent processing, for instance, robust control design. Then, techniques similar to those dealing with unknown-but-bounded equation errors are used. They intentionally give up stochastic interpretation of innovations and develop various algorithms of a min-max type.

(cze): Autoregresní model s vnějším vstupem (ARX) je často používaným typem modelu. Jeho inovace, stochastické, nepozorovatelné poruchy modelu, mají nulovou střední hodnotu a časově konstantní varianci. Většinou předpokládáme, že inovace mají normální rozložení a parametry modelu se odhadují pomocí metody nejmenších čtverců. V některých případech (např. při robustním řízení) vznikají problémy kvůli neomezenému supportu normálního rozložení. Zde pak nastupují algoritmy typu "min-max", které nepoužívají stochastický přístup. Tento článek spojuje oba přístupy (omezenost chyb a pravděpodobnostní přístup) tím, že inovace popisujeme pomocí rovnoměrného rozložení. V článku je nejprve popsána aposteriorní hustota pravděpodobnosti (pdf), a poté aproximována pomocí pdf s konečně-rozměrnou statistikou. Díky tomu může odhadování probíhat v reálném čase.

: BC