Summary of Probabilistic Models with Uniformly Distributed Uncertainty

Lenka Pavelková

9th January 2012

- Identification and control of the real systems
- Bayesian decision making theory
- Real system description
 - ARX model + normal noise
 - State-space model + normal noise
- Prediction and control ⇒ estimation and filtering

ARX model + normal noise \rightarrow LS State model + normal noise \rightarrow KF

- ⊕ Reasonable approximation of reality
- ⊕ Well algorithmically processed
- ⊕ Unsatisfactory in some applications
- ⊖ Problems with strictly bounded parameters

Unknown but bounded errors

- ⊕ Restricted support
- → Without statistical tools

Problem solution: Models with uniform noise

ARX model + normal noise \rightarrow LS State model + normal noise \rightarrow KF

- \oplus Reasonable approximation of reality
- ⊕ Well algorithmically processed
- ⊖ Unsatisfactory in some applications
- ⊖ Problems with strictly bounded parameters

Unknown but bounded errors

- ⊕ Restricted support
- → Without statistical tools

Problem solution: Models with uniform noise

ARX model + normal noise \rightarrow LS State model + normal noise \rightarrow KF

- ⊕ Reasonable approximation of reality
- ⊕ Well algorithmically processed
- ⊖ Unsatisfactory in some applications
- ⊖ Problems with strictly bounded parameters

Unknown but bounded errors

- ⊕ Restricted support
- → Without statistical tools

Problem solution: Models with uniform noise

Underlined theory

Bayesian probabilistic approach

- model probability density (pd)
- Bayes rule:

$$f(\mathbf{X}|data) \propto f(data|\mathbf{X})f(\mathbf{X})$$

MAP estimation

$$\hat{\mathbf{X}} = \arg \max_{\mathbf{X}^*} f(data|\mathbf{X}) f(\mathbf{X})$$

Uniform ARX model - description

$$y_t = \psi_t' \theta + e_t$$

```
t - discrete time, t \in t^* = 1, 2, ..., T y_t - measured output \psi_t = [y_{t-1}, \ldots, y_{t-n}, u_t, \ldots, u_{t-n}] - regression vector, \theta = [a_1, \ldots, a_n, b_0, \ldots, b_n] - regression coefficients, e_t \sim \mathcal{U}(-r, r) - measurement noise.
```


ARX model - parameter estimation

Parameters $\Theta = (\theta, r)$

$$f(\Theta|\mathsf{data}) \propto rac{1}{r^{
u_t}} \chi(\mathcal{M})$$

$$\mathcal{M}: \left\{ egin{array}{ll} \mbox{prior information} \\ \mbox{ARX model \& data} \end{array} \right.$$

Statistics:

counter
$$u_t =
u_{t-1} + 1$$
 data matrix $W_t' = \left[W_{t-1}', \Psi_t \right]$

$$\Psi_t$$
 - data vector; $\Psi_t' \equiv [y_t, \psi_t']$

ARX model - approximation

Point MAP estimate → linear programming (LP)

- size of data matrix W_t increases with the time \Rightarrow recursive estimation needs **approximation**
- ullet original $W_t o$ approximated V_t

Problems solved:

- ullet choice of size of matrix $V_t \Leftrightarrow$ memory length
- update and approximation:

$$V_{t-1} + \Psi_t \rightarrow V_t$$

ARX model - approximation - variants

First in - first out principle:

ARX model - approximation - variants

Removal of the least informative data:

ARX model - approximation - variants

Circumscribing:

State-space model with uniform noise (SU model)

For
$$t \in t^* = 1, 2, ..., T$$

$$\mathbf{x}_t = g(\mathbf{x}_{t-1}, \mathbf{u}_t) + \mathbf{w}_t; \qquad f(\mathbf{w}_t | \mathbf{q}) = \mathcal{U}(-\mathbf{q}, \mathbf{q})$$
 $\mathbf{y}_t = h(\mathbf{x}_t) + \mathbf{e}_t; \qquad f(\mathbf{e}_t | \mathbf{r}) = \mathcal{U}(-\mathbf{r}, \mathbf{r})$

```
\mathbf{u}_t - input
```

 \mathbf{x}_t - state

 \mathbf{y}_k - output

g, h - real vector functions

 \mathbf{w}_t , \mathbf{e}_t - state and output noises

SU model - pdf representation

$$f(\mathbf{X}|data) \propto \prod_{i=1}^m q_i^{-(\Delta+1)} \ \prod_{j=1}^n r_j^{-(\Delta+1)} \ \chi(\mathcal{S})$$

$$\mathcal{S}: \left\{ \begin{array}{l} \text{prior information} \\ \text{state-space model \& data} \\ \text{restriction on states} \end{array} \right.$$

SU model - estimation

The MAP estimate of X:

$$\hat{\mathbf{X}} = \arg\min_{\mathbf{X} \in \mathcal{S}} \left(\sum_{i=1}^{m} \ln(q_i) + \sum_{j=1}^{n} \ln(r_j) \right)$$

The MAP estimate \rightarrow non-linear programming form

SU model - variants

- SU model with missing data
- linear SU model with unknown model matrices
- linear SU model with correlated noise

SU model - estimates characteristics

Window $\Delta \Rightarrow$ multiple state estimates

time	estimates	;				
t:			$\hat{\mathbf{x}}_t$	$\hat{\mathbf{x}}_{t-1}$		$\hat{\mathbf{x}}_{t-\Delta}$
t + 1:	x	t+1	$\hat{\mathbf{x}}_t$		$\hat{\mathbf{x}}_{t-\Delta+1}$	
:			:			
$t + \Delta$:	$\hat{\mathbf{x}}_{t+\Delta}$		$\hat{\mathbf{x}}_t$			

Model:

$$f(\hat{x}_{t|t},\ldots,\hat{x}_{t|t+\Delta}|x_t,\rho)$$

"data"

$$\bullet$$
 $\hat{x}_{t|t}, \ldots, \hat{x}_{t|t+\Delta}$

statistics

- $\bullet \ \underline{s} = \min \left\{ \hat{x}_{t|k} \right\}$
- $\bullet \ \overline{s} = \max \left\{ \hat{x}_{t|k} \right\}$
- n

interval estimate

• $[E[x_t - \rho | \underline{s}, \overline{s}, n], E[x_t + \rho | \underline{s}, \overline{s}, n]]$

Application - Queue length estimation

Model of **controlled intersection** - quantities:

- measured intensity I_t and Y_t , occupancy O_t
- estimated length of the car queue ξ_t , parameters κ , β , λ
- given green time z_t , sat. flow S, turning rates α

Application - Estimation of moving vehicle position

Conclusion - Benefits of uniform models

They

- allow estimation of the noise range
- respect hard bounds on the estimated quantities
- enable the joint estimation of parameters, states, and noise bounds
- fit to robust-control applications
- provide an easy entry of the partial knowledge on the model matrices
- ullet update estimates on the whole window of the length Δ
- enable parameter tracking

Thank you for your attention!