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Anisotropy-based theory

• Optimal anisotropy-based optimization problem (1993-2005)

1. Fundamentals of the theory: anisotropy of the signal, mean anisotropy
of the sequence, physical interpretation, how to calculate.

2. Anisotropic norm: properties, how to calculate.
Asymptotic of anisotropic norm

3. Anisotropy - based optimal control problem. The
problem solution. Equations for optimal control design.

4. Computation tool for control design. Gomotopy method for solving
cross-coupled equations.

5. Anisotropy-based small gain theorem. Criteria of robust stability.

6. Anisotropic-based optimal control problem for the
systems with parametric uncertainties.



• Suboptimal anisotropy- based problem. (2005 - 2012)

1. Suboptimal anisotropy- based problem. KYP lemma for suboptimal
problem. LMI methods in Anisotropic theory. Semidefinite programming
in anisotropic theory.

2. Model reduction in anisotropy - based theory.



Application of anisotropy-based theory

• Anisotropy-based theory for descriptor systems. (2012 - ????)

1. Anisotropy-based theory for descriptor systems.
Analysis problem. Synthesis problem.

2. How to calculate anisotropic norm for descriptor systems.

3. Suboptimal problem for descriptor system.

• Adaptive anisotropy-based control

1. How to find generating filter for concrete mean
anisotropy level. Signal processing problem.

• How to extend anisotropic theory to some non linear systems. Absolute
stability.



Anisotropy-based theory with non-zero
expectation of input disturbance

• Optimal anisotropy-based optimization problem

1. Fundamentals of the theory in this case: anisotropy of the signal,
mean anisotropy of the sequence, physical interpretation, how to
calculate.

2. Anisotropic norm: how to calculate.

3. Anisotropy - based optimal control problem in this case. Some ideas
how to solve a problem.



Introduction



Disturbance attenuation problem
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Рис. 1: Control for disturbance attenuation

F is the plant, K is a controller, W and Z are input and output appropriately,
Y and U are observing output and control.

Find control, which minimizes the gain from W to Z.



Examples of such problems.
LQG and H∞ optimization.

Schipanov’s invariance theory

If F and K are linear operators, there are two well known
theories, which are the particular cases of theory above:
LQG/H2 and H∞ optimization.

What are the gains in those theories and which sense of
those gains?
Another example: Schipanov’s invariance theory
(1939 - "Automation and remote control").

Z = 0 absolute invariance, Z ≤ ϵ invariance accurate within ϵ.



Standard H2 optimization problem

Standard H2 optimization problem: Find the controller K, which

• stabilizes close loop system

• minimizes H2 norm of close loop transfer function matrix TZW from
W to Z:

∥TZW ∥2 → min (1)

Definition:

∥H∥2 =

(
Tr

∫ π

−π

Ĥ(ω)(Ĥ(ω))∗dω

)1/2

, (2)

where
Ĥ(ω) ≡ lim

r→1−0
H

(
r eiω

)
, ω ∈ Ω ≡ [−π;π] ,

is the angular boundary value of the generating filter H.



Standard H∞ optimization problem

Standard H∞ optimization problem: Find the controller K,

• stabilizes close loop system

• minimizes H∞ norm of close loop transfer function matrix TZW from
W to Z:

∥TZW ∥∞ → min (3)

Suboptimal H∞ control problem:

∥TZW ∥∞ ≤ γ, (4)

где γ ≥ γopt, γopt ≥ ∥TZW ∥∞.

For transfer function matrix H(z) the define

∥H∥∞ ≡ sup
|z|<1

σ(H(z)) = ess sup
ω∈Ω

σ
(
Ĥ(ω)

)
, (5)

where σ(·) is maximal singular value of matrix.



Similarity and difference of H∞ and H2 control problems

Similarity. The solving of both problems are based on solutions of Riccati
equations, in H∞ suboptimal control problem Riccati equation has some
parameter γ. If γ → ∞ the Riccati equations for H∞ suboptimal control
problem tend to Riccati equations for LQG control problem.

Difference. Frequency interpretation for H∞ and H2 optimal problem
for SISO systems : H∞ controllers are designed to minimize maximum
of amplitude-frequency characteristic of closed-loop system, H2 control
minimizes the average amplitude over all frequencies.

Input signal assumptions: Input disturbance W is to be gaussian white
noise in LQG problem. Input disturbance W is quadratic integrable in H∞

problem.



Singularity of H∞ and H2 controllers functioning if
input signal assumptions are not true.

The close loop system does not work good with H2 controller in disturbance
attenuation problem if the input signal is «far from» white noise.

The close loop system with H∞ controller is very conservative (the great
amount of control needed) if the input signal is « closed enough» to gaussian
white noise.



Convergence (trade-off)between H∞ and H2 theories
Capability of common (joint) theory construction

• Optimal ( suboptimal) H∞ controllers are not unique. It means we
can propose once more performance criterion .

• Natural choice for the new performance criterion is H2 norm of close
loop transfer function matrix.

1. Minimization of close loop
system H2 norm with constraints
on H∞ norm.
Bernstein D.A., Haddad W.M.
LQG Control with an H∞

Performance Bound: A Riccati
Equation Approach. //IEEE
Transactions on Automatic
Control, AC-34, N 3, 1989.

2. Minimization of close loop
system H∞ norm with upper bound
H2 norm minimization.
Mustafa D., Glover K. Minimum
Entropy H∞-Control. Lecture
Notes in Control and Information
Sciences, Springer-Verlag, Berlin
etc., 1991.



H∞ optimization problem with minimization of H∞ entropy

On the set of H∞ suboptimal controllers to find controller which minimizes
H∞ entropy functional

J(γ, F ) = − γ2

2π

∞∫
−∞

ln |det
(
Im − γ−2 (F (jω))∗ F (jω)

)
|dω,

γ is the number that bounds close loop transfer function H∞ norm for
stable close loop system F (s).

The minimization of H∞ entropy of the system F (s) is equivalent of the
minimization of upper bound of H2 norm of F (s).

• Designed controller is unique .

• H∞ control problem with H∞ entropy minimization is equivalent to
risk sensitivity problem.



Class of control systems anisotropy theory was done for.
Mathematical models for investigation


xk+1 = Axk + B1wk + B2uk

zk = C1xk + D11wk + D12uk

yk = C2xk + D21wk

, −∞ < k < +∞ ,

(6)
where A, Ci, Bj и Dij are appropriative dimension constant matrixes.
System F (z), and its subsystems F (z)ij have following state space realizations:

F ∼


A B1 B2

C1 D11 D12

C2 D21 0

 , (7)

Fij ∼

 A Bj

Ci Dij

 , 1 ≤ i, j ≤ 2 (8)



Anisotropy theory background

1. Fundamentals of the theory: anisotropy of the signal,
mean anisotropy of the sequence, physical interpretation

How to calculate



Definition 1 The relative entropy (Kullback-Leibler distance) D(f ∥ g)

between two densities f(x) and g(x) is defined by

D(f ∥ g) =

∫
f(x) log

f(x)

g(x)
dx. (9)

D(f ∥ g) is finite, if support set of f(x) is contained in the the support set

of g(x) . It is true that 0 log
0

0
= 0.

D(f ∥ g) ≥ 0

with equality iff f = g almost everywhere.

Definition 2 Let X and Y are two random variable with joint distribution
function of probability density f(x, y) and probability density functions f(x)
f(y) appropriately . The mutual information I(X;Y ) is defined as

I(X;Y ) =

∫
log f(x, y)

f(x, y)

f(x)f(y)
dxdy. (10)



Definition of anisotropy of the random vector

Denote by Lm
2 the class Rm-dimension absolutely continuously distributed

random vectors W with values in Rm satisfying E |W |2 < ∞ .

For any λ > 0 denote as pm,λ the probability density function (pdf) on
Rm of gaussian signal with zero mean and scalar covariance matrix λIm

pm,λ(w) = (2πλ)−m/2 exp

(
−|w|2

2λ

)
, w ∈ Rm. (11)

For any W ∈ Lm
2 with pdf f : Rm → R+ the relative entropy of W ∈ Lm

2

according to (11) has the following view

D (f∥pm,λ) = Ef ln
f(W )

pm,λ(W )
= −h(W ) +

m

2
ln(2πλ) +

E|W |2

2λ
, (12)

where

h(W ) = −E ln f(W ) = −
∫
Rm

f(w) ln f(w)dw (13)

is differential entropy of random vector W



Definition of anisotropy of the random vector (continuation)

Definition 3 The anisotropy A(W ) of random vector W ∈ Lm
2 is defined

as minimal relative entropy of its pdf from gaussian distribution Rm with
zero mean and scalar covariance matrix

A(W ) = min
λ>0

D (f∥pm,λ) . (14)

Direct calculation shows, that minimum in (12) over λ > 0 is obtained if
λ = E|W |2/m , so

A(W ) = min
λ>0

D (f∥pm,λ) =
m

2
ln

(
2πe

m
E|W |2

)
− h(W ). (15)



Properties of random vector anisotropy

Denote by Gm(Σ) the class of Rm-valued gaussian disturbances random
vectors W with EW = 0 and nonsingular covariance matrix cov(W ) = Σ,
so that the corresponding pdf is

p(w) = (2π)−m/2(detΣ)−1/2 exp

(
−1

2
∥w∥2Σ−1

)
,

∥x∥Q =
√

x⊤Qx denotes the norm of a vector x, induced by a positive
definite symmetric matrix Q > 0.

Lemma 1

(a) For any positive definite matrix Σ ∈ Rm×m,

min
W

{
A(W ) : W ∈ Lm

2 , E(WW⊤) = Σ
}
= −1

2
ln det

mΣ

TraceΣ
,

(16)
and the minimum is attained only for W ∈ Gm(Σ);

(b) For any W ∈ Lm
2 , A(W ) ≥ 0. Moreover A(W ) = 0 iff W ∈ Gm(λIm)



Mean anisotropy of random sequences

Let W ∈ Lm
2 be partitioned into subvectors w1, . . . , wr of dimentions m1, . . . ,mr,

e.g. m1 + . . .+mr = m

W =


w1

...

wr

 . (17)

For any 1 ≤ s ≤ t ≤ r, denote by Ws:t = (wk)s≤k≤t the (ms + . . .+mt)-
dimensional subvector of W (17), obtained by "stacking"ws, . . . , wt.

Definition 4 The mean anisotropy of sequence W is defined as:

A(W ) = lim
N→+∞

A(W0:N−1)

N
. (18)



Mean anisotropy of gaussian random sequences

Let V ≡ (vk)−∞<k<+∞ ∈ Gm(I), W ≡ (wk)−∞<k<+∞ ≡ GV ,

G� �
W V

Рис. 2:

The generating filter G ∈ Hm×m
2 is identified with its transfer function

G(z) ≡
+∞∑
k=0

gk z
k , where gk ∈ Rm×m , k ≥ 0 is input-impulse response.

Theorem 1 The mean anisotropy (18) can be representable as

A(W ) = − 1

4π

π∫
−π

ln det

(
m

∥G∥22
Ĝ(ω)

(
Ĝ(ω)

)∗
)

dω . (19)



Properties of gaussian sequence mean anisotropy

• A(W ) > 0 if rank Ĝ(ω) = m for almost all ω ∈ [−π, π),

• A(W ) = +∞ if Ĝ - not maximum rank,

• A(W ) = 0 if there is such number α > 0 что
Ĝ(ω)Ĝ∗(ω) = αIm, −π ≤ ω < π .



Calculation of mean anisotropy in state space

Let state space representation of generating filter G ∈ Hm×m
2 be xk+1 = Axk +Bvk

wk = Cxk +Dvk
, −∞ < k < +∞, (20)

where A,B,C,D are matrices of appropriative dimension. The matrix ρ(A) <

1 is assumed to be asymptotically stable (with spectral radius ρ(a) < 1)

and D nonsingular.

Associate with the filter G the Riccati equation in the matrix R ∈ Rn×n

R = ARA⊤ +BB⊤ − ΛΘΛ⊤, (21)

Λ
.
= (ARC⊤ +BD⊤)Θ−1, (22)

Θ
.
= CRC⊤ +DD⊤. (23)

A solution R of equation (21)–(23) is said to be admissible if R is symmetric
and positive semidefinite and matrix A− ΛC is asymptotically stable.



Calculation of mean anisotropy in state space

The equation (21)–(23) can be written in a form

ARA⊤ −R− (ARC⊤ +BD⊤)

× (CRC⊤ +DD⊤)−1(CRA⊤ +DB⊤) +BB⊤ = 0. (24)

Theorem 2 Let a generating filter G ∈ Hm×m
2 have state-space realization

(20) with A asymptotically stable and D nonsingular. Then the mean anisotropy
(19) of the sequence W = GV is

A(G) = −1

2
ln det

(
mΘ

Trace (CPC⊤ +DD⊤)

)
, (25)

where Θ = CRC⊤ + DD⊤, R is admissible Riccati equation (21)–(23),
and P is controllability gramian of the filter satisfying Lyapunov equation

P = APA⊤ +BB⊤. (26)



Algorithm for mean anisotropy calculation

• The Riccati equation (21)–(23) or (24):

ARA⊤ −R− (ARC⊤ +BD⊤)

× (CRC⊤ +DD⊤)−1(CRA⊤ +DB⊤) +BB⊤ = 0.

is solved , and R and Θ = CRC⊤ +DD⊤ is found

• Lyapunov equation
P = APA⊤ +BB⊤.

is solved.

• The mean anisotropy is calculated by formula

A(G) = −1

2
ln det

(
mΘ

Trace (CPC⊤ +DD⊤)

)
.



2. Anisotropic norm: properties, how to calculate.
Asymptotic of anisotropic norm.



Anisotropic norm of linear time invariant systems

Let F (z) ∈ Hp×m
∞ be linear time invariant system and Z = FW , e.g. F (z)

is analitic in open unit ball and has finite H∞ norm ∥F∥∞ = sup
|z|<1

σ(F (z)) =

ess sup
−π≤ω≤π

σ(F̂ (ω)), where σ( · ) is maximum singular value of F (z).

Definition 5 For given a ≥ 0, a-anisotropic norm of the system F is
defined as

|||F |||a = sup
G

{∥FG∥2/∥G∥2 : G ∈ Ga} , (27)

Ga =
{
G ∈ Hm×m

2 : A(G) ≤ a
}

(28)

V�G ∈ Ga
�F�Z

W

Рис. 3:



Properties of anisotropic norm for linear system

For any fixed system F ∈ Hp×m
∞ , its a-anisotropic norm (53) is nondecreasing

continuous function of a ≥ 0 satisfying

1√
m

∥F∥2 = |||F |||0 ≤ |||F |||a ≤ lim
a→+∞

|||F |||a = ∥F∥∞. (29)

By (29), computing the norm |||F |||a is only of interest if a > 0 and

∥F∥2 <
√
m ∥F∥∞ (30)

(there is a particular interest if ∥F∥∞ ≫ ∥F∥2/
√
m). This equality is not

true iff, F is an inner (inner system) up to a nonzero constant multiplier
λ > 0 such that (F̂ (ω))∗F̂ (ω) = λIm for almost all ω ∈ [−π, π). For
nonzero system F ∈ Hp×m

∞ , the inequality p < m implies (30).



Anisotropic norm of linear system

||F||
inf


K||F||

2


|||F|||

a


a


Рис. 4: Changes of anisotropic norm

K =
1√
m



Asymptotic behavior of a - anisotropic norm

|||F |||a − ∥F∥2√
m

∼

√
∥F∥44/m− (∥F∥22/m)2

∥F∥2
√
a if a → 0+, (31)

∥F∥∞ − |||F |||a ∼ 1

2
∥F∥∞ exp

(
− 2

m
(J(∥F∥∞) + a)

)
if a → +∞,(32)

For any positive integer k, the norm of the system F ∈ Hp×m
∞ in Hardy

space Hp×m
2k is defined as

∥F∥2k =

 1

2π

π∫
−π

Trace
(
(F̂ (ω))∗F̂ (ω)

)k

dω

1/(2k)

(particularly, for k = 1, it gives H2-norm).

J(γ, F ) = − γ2

2π

∞∫
−∞

ln |det
(
Im − γ−2 (F (jω))∗ F (jω)

)
|dω,



Pseudo multiplicative property of anisotropic norm

The ring property of H∞-norm , (sub multiplicative property)

∥FG∥∞ ≤ ∥F∥∞∥G∥∞

is not true for anisotropic norm ||| · |||a.

But there is the analog of ring property.

Theorem 3 For any a ≥ 0 and any systems F ∈ Hp×m
∞ и G ∈ Hm×m

∞ ,

|||FG|||a ≤ |||F |||b |||G|||a (33)

где
b = a+A(G) +m ln

(√
m |||G|||a/∥G∥2

)
. (34)

Corollary 1 ANISOTROPIC-BASED SMALL GAIN THEOREM



How to calculate the anisotropic norm in state space

Let system F has the following state space representation

F =

 A B

C D


It is well known fact for calculation of ∥F∥2 norm of the system F it is
necessary to solve Lyapunov equation.

It is well known fact for calculation of ∥F∥∞ norm of the system F it is
necessary to solve Riccati equation (Bounded real lemma).

As far as anisotropic norm |||F |||a of the system lies "between"normalized
∥F∥2 and ∥F∥∞ norms, it natural to propose that we have to use Lyapunov
and Riccati equation for anisotropic norm calculation. It is really true, but
for the calculation algorithm we have to add some special time equation.



How to calculate the anisotropic norm in state space II

Anisotropic norm is calculated by the formula

|||F |||a =

(
1

q

(
1− m

Trace (LPL⊤ +Σ)

))1/2

.

q, P, L,Σ are unknown parameters. The can be calculated by solving coupled
equations: (35) ia Riccati equation , (36) is Lyapunov equation, (37) is a
special time equation

R = A⊤RA+ qC⊤C + L⊤Σ−1L,

L = Σ(B⊤RA+ qD⊤C), (35)

Σ = (Im −B⊤RB − qD⊤D)−1.

P = (A+BL)P (A+BL)⊤ +BΣB⊤, (36)

a = −1

2
ln det

(
mΣ

Trace (LPL⊤ +Σ)

)
. (37)



Anisotropy-based control design problem

Let W be generated from m1-dimensional gaussian white noise V с with
zero expectation and unit covariance matrix by unknown generating filter
G from

Ga ≡
{
G ∈ Hm1×m1

2 : A(G) ≤ a
}
. (38)

F

K

�

-

�
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Z

L(F,K)

� W
G ∈ Ga

� V



3. Anisotropic-based optimization problem:

Problem 1 For given system F and mean anisotropy level a ≥ 0 of input
disturbance W find the controller K ∈ K, that minimizes the a-anisotropic
norm of closed loop system Fl(F,K):

|||Fl(F,K)|||a ≡ sup

{
∥Fl(F,K)G∥2

∥G∥2
: G ∈ Ga

}
→ inf , K ∈ K . (39)

Let us note if a = 0 , the above problem 3 is coincided with standard H2

optimization problem (Kolmogorov - Wiener-Hopf-Kalman optimization
problem).



Solution of anisotropic-based design problem

The solution of the problem is reduced to the solving of
three algebraic matrix Riccati equations, Lyapynov equation
and one algebraic equation of special type. If a = 0 the
four matrix equations turn into well known two Riccati
equations from Kalman theory and the equation of special
type cancels.



4. How to find the solution by computer?
Vladimirov’s Package

Crossed- coupled three matrix algebraic Riccati equations, Lyapunov equation
and special type equation have been solving by homotopy method. We
reduced the solution of the algebraic system to differential equation system.
The anisotropy level was the independent variable in those differential
systems. The initial conditions were the solutions of the problem if α = 0,
the LQG problem.

I.G. Vladimirov create the application package (software kit) for MathLab
and programmed it.



5. ANISOTROPIC-BASED SMALL GAIN THEOREM

The ring property of H∞-norm , (sub multiplicative property)

∥FG∥∞ ≤ ∥F∥∞∥G∥∞

is not true for anisotropic norm ||| · |||a.

But there is the analog of ring property.

Theorem 4 For any a ≥ 0 and any systems F ∈ Hp×m
∞ и G ∈ Hm×m

∞ ,

|||FG|||a ≤ |||F |||b |||G|||a (40)

где
b = a+A(G) +m ln

(√
m |||G|||a/∥G∥2

)
. (41)

Corollary 2 ANISOTROPIC-BASED SMALL GAIN THEOREM



Robust stability in anisotropic theory

Let P be the object with follow description z1

z2

 =

 P11 P12

P21 P22

 w1

w2

 . (42)

p

�

∆

q

-

P�z � w

Рис. 5: P–∆ конфигурация.



Theorem 5 Consider Fu(P,∆), where ∆ : l2 → l2 and P : l2 → l2 are
causal linear systems.

• Let P be stable and

|||P11|||c < ϵ−1,where c = a+m ln
ϵ

ess inf
−π≤ω≤π

σ(∆(jω))
, (43)

σ(∆) =
√

λmin(∆∗∆) – minimum singular value of ∆, ϵ > 0.

• Let

a = −1

2
ln det

mΣ

trΣ
−m ln

ϵ

ess supσ(∆(jω))
,

where Σ = (Im − qP ∗
11P11)

−1, and parameter q ∈ [0, ∥P11∥−2
∞ ) satisfies

inequality

tr
[(
Im − ϵ2P ∗

11P11

)
(Im − qP ∗

11P11)
−1

]
≤ 0. (44)

Then for all ∆ ∈ Da(ϵ) close-loop system Fu(P,∆) is internal stable.



6. Anisotropic-based optimal control problem
for the systems with parametric uncertainties.

Problem 2 For system F , given by
xk+1 = (A+ F1ΩkE1)xk + (B0 + F2ΦkE2)wk + (B2 + F3ΨkE3)uk,

zk = C1xk +D12uk,

yk = C2xk +D21wk,

(45)
where Ωk, Φk, Ψk are unknown with conditions:

Ω⊤
k Ωk ≤ I, Φ⊤

k Φk ≤ I, Ψ⊤
k Ψk ≤ I, −∞ < k < +∞, (46)

and for given level of mean anisotropy to find the controller, that minimized

J0(K) = sup
Ωk,Φk,Ψk

|||Fl(F,K)|||a . (47)



Solution of anisotropic-based design problem
with parametric uncertainties

The solution of the problem is reduced to the solving of
four algebraic matrix Riccati equations, Lyapynov equation
and one algebraic equation of special type.



Application of anisotropy-based theory

• Suboptimal anisotropy-based problem. Anisotropy KYP
lemma. Design method with LMI and semi-definite
programming technic.

• Anisotropy-based theory for descriptor systems.
Analysis and synthesis problems.

• Adaptive anisotropy control

• Anisotropy analysis inverse problem.



Anisotropic-based suboptimization problem

Let F be describe by
xk+1 = Axk + B1wk + B2uk

zk = C1xk + D11wk + D12uk

yk = C2xk + D21wk

, −∞ < k < +∞ ,

(48)

Problem 3 For given system F and mean anisotropy level a ≥ 0 of input
disturbance W find the controller K ∈ K, that provides the a-anisotropic
norm of closed loop system Fl(F,K) inequality:

|||Fl(F,K)|||a ≡ sup

{
∥Fl(F,K)G∥2

∥G∥2
: G ∈ Ga

}
≤ γ, , K ∈ K . (49)



Anisotropic-based optimal problem for descriptor systems


Ex(k + 1) = Ax(k) +B1w(k) +B2u(k)

z(k) = C1x(k) +D11w(k) +D12u(k)

y(k) = C2x(k) +D21w(k) +D22u(k)

(50)

rank(E) = r < n.

Problem 4 For given system (52) and mean anisotropy level a ≥ 0 of W
find K minimizing a- anisotropy norm of closed loop system :

|∥Fl(F,K)|∥a = sup

{
∥Fl(F,K)G∥2

∥G∥2
: G ∈ Ga

}
→ inf, (51)

Fl(F,K) is low linear fractional transformation.



Anisotropic-based suboptimal problem for descriptor system


Ex(k + 1) = Ax(k) +B1w(k) +B2u(k)

z(k) = C1x(k) +D11w(k) +D12u(k)

y(k) = C2x(k) +D21w(k) +D22u(k)

(52)

rank(E) = r < n.

Problem 5 For given system (52) and mean anisotropy level a ≥ 0 of W
find K that provides a- anisotropy norm of closed loop system inequality:

|∥Fl(F,K)|∥a = sup

{
∥Fl(F,K)G∥2

∥G∥2
: G ∈ Ga

}
≤ γ, (53)

Fl(F,K) is low linear fractional transformation.



Adaptive anisotropy control
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• Identification of the input disturbance parameters.

• Calculation of mean anisotropy.

• Tuning the control parameters in according to new value of mean
anisotropy.



Anisotropy analysis inverse problem
Creation of stochastic sequence with given property

Problem 6 Let a level of mean anisotropy a of sequence {wk} be given.
Sequence {wk} is received from white noise by filter xk+1 = Axk +Bvk,

wk = Cxk +Dvk,
(54)

где A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m.

Matrix A is stable and D is not singular, e.g. ρ(A) < 1, detD ̸= 0.

Find the matrixes A,B,C,D.



Non-zero input disturbance expectation
Let pdf of input disturbances W of the system F be

f(x) = ((2π)m|S|)−1/2 exp

(
−1

2
(x− µ)TS−1(x− µ)

)
, x ∈ Rm.

For any λ > 0 denote as pm,λ the probability density function (pdf) on
Rm of gaussian signal with zero mean and scalar covariance matrix λIm

pm,λ(w) = (2πλ)−m/2 exp

(
−|w|2

2λ

)
, w ∈ Rm.

The definitions of anisotropy of the signals and mean anisotropy of the
sequences will be the same as we defined above:

Aµ(W ) , min
λ>0

Ef ln
f(x)

pm,λ(x)

Aµ(W ) , lim
N→∞

Aµ(W0:N−1)

N
,



Comparisons of the results

G� �
W V

 xk+1 = Axk +Bvk,

wk = Cxk +Dvk,

A(W ) = −1

2
ln det

mΣ

trΣ
.

A(W ) = −1

2
ln det

(
m(Σ + Ξ)

trΣ

)

G� ?

M

�
W V

 xk+1 = Axk +Bvk,

w′
k = Cxk +Dvk + µ,

A(W ) = −1

2
ln det

mΣ

trΣ + |µ|2 .

A(W ) = −1

2
ln det

(
m(Σ + Ξ)

trΣ + |µ|2

)
,



Anisotropic norm

Anisotropic norm for stable system F is calculated by

|||F |||a,µ = sup
µ,q: A(µ,q)6a

N (µ, q), where

N (µ, q) =

(
1

q

(
1− m+ |Xµ|2 − q|Y µ|2

tr(LPLT +Σ) + |Xµ|2

))1/2

, q ∈ [0; ∥F∥−2
∞ ),

X = Im + L(In − (Acl +BclL))
−1Bcl,

and
Y = Dcl + (Ccl +DclL)(In − (Acl +BclL))

−1Bcl.

Reminder:

|||F |||a =

(
1

q

(
1− m

Trace (LPL⊤ +Σ)

))1/2

.

q, P, L,Σ are unknown parameters.



Anisotropy-based control design problem
with non-zero mean of input disturbance
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Now we can solve this problem under special conditions.



Future investigations
for such systems

• Suboptimal anisotropy-based problem. Anisotropy KYP
lemma. Design method with LMI and semi-definite
programming technic.

• Anisotropy-based theory for descriptor systems.
Analysis and synthesis problems.

• Adaptive anisotropy control



VERY DIFFICULT PROBLEM

How to extend anisotropic theory
for continue - time systems.

Thank you very much for your attention
and for your patience.


