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@ headway distributions in IPS

Questions to be answered

o distance-headway distribution:

“What is the probability that there is a gap of the length n
between two consecutive vehicles/particles?”

o time-headway distribution

“What is the probability that there is a time interval of the length ¢
between the passes of two consecutive vehicles/particles
through a reference point?”
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-
IPS in Exclusion Process representation

@ at most one particle in site x { 1 xoccupied,
Ty =

@ state of x is 7y 0 xempty,

L 100 1000 | | 1O |

S5 4 3 -2 -1 0 1 2 3 4 5 6

pavel hrabak @fjfi.cvut.cz 8th September 2014 3/17



-
IPS in Exclusion Process representation

@ state of x is 7y

@ at most one particle in site x 1 xoccupied,
Ty =
! 0 xempty,

@ particles hopping from x to y with probability/intenzity

p(X,y) cTx (1 - Ty) 'g(T(Nx,y))

L 100 1000 | | 1O |

S5 4 3 -2 -1 0 1 2 3 4 5 6

pavel hrabak @fjfi.cvut.cz 8th September 2014 3/17



-
IPS in Exclusion Process representation

@ at most one particle in site x { 1 xoccupied,
Ty =

@ state of x is 7y 0 xempty,

@ particles hopping from x to y with probability/intenzity

p(X,y) cTx (1 - Ty) 'g(T(Nx,y))

@ p(x,y) — underlying random walk

P12 P13 Dia

L 100, 10101%101 |

S5 4 3 -2 -1 0 1 2 3 4 5 6

pavel hrabak @fjfi.cvut.cz 8th September 2014 3/17



-
IPS in Exclusion Process representation

@ at most one particle in site x { 1 xoccupied,
Ty =

@ state of x is 7y 0 xempty,

@ particles hopping from x to y with probability/intenzity
p(X,y) cTx (1 - Ty) 'g(T(Nx,y))
@ p(x,y) — underlying random walk

o g(7(N.,)) —reaction with the neighbourhood Ny,

Nz P12 P13 Pl

L 10,0 00 F Vo |

S5 4 3 -2 -1 0 1 2 3 4 5 6

pavel hrabak @fjfi.cvut.cz 8th September 2014 3/17



o
IPS suitable for traffic modelling

L 100 1000 | | 1O |

S5 4 3 -2 -1 0 1 2 3 4 5 6

pavel hrabak @fjfi.cvut.cz 8th September 2014 4/17



o
IPS suitable for traffic modelling

@ particles cannot move backwards

| AOAOA%AOAOA L1 101 |

S5 4 3 -2 -1 0 1 2 3 4 5 6

pavel hrabak @fjfi.cvut.cz 8th September 2014 4/17



o
IPS suitable for traffic modelling

@ particles cannot move backwards
@ particles cannot overtake (discutable)

1005000k | 10

S5 4 3 -2 -1 0 1 2 3 4 5 6

pavel hrabak @fjfi.cvut.cz 8th September 2014 4/17



o
IPS suitable for traffic modelling

@ particles cannot move backwards

@ particles cannot overtake (discutable)

_ y<x backward movement
g(T(Nxy)) =0 <= {Elz(x <z<y)(r,=1) overtaking
P12 P13 P4
L 100 (OO0 " " O |
S5 4 3 2 -1 0 1 2 3 4 5 6

P. Hrabdk

pavel.hrabak @fjfi.cvut.cz

8th September 2014

4/17



o
IPS suitable for traffic modelling

@ particles cannot move backwards

@ particles cannot overtake (discutable)

@ the range of N, , is “conditionally” restrained (for simplicity)

p (T ( ny)) 0w y<x backwa’rd movement
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-
Stationary distribution P

e state space S = {0, 1}1, L C Z is a lattice

o set function P : (F C 25) — [0,1] : A — P{r € A}
o L finite = P(4) = Y, P(7)
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-
Cluster probabilities P,

@ consider translational invariance of the dynamics (circle, infinite line)
and L — +o0
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Cluster probabilities P,

@ consider translational invariance of the dynamics (circle, infinite line)
and L — +o0

@ cluster probabilities

Pul(styeooysn) =P (T1=51,...,Tw =8y) =

:,P(TZZS],...,T,,JF]:Sn):...

@ Kolmogorov consistency conditions
Pu(st, .., sn) = anﬂ(sh ey Sn,8) = an+1(s,sl, ey Sn)
s N

@ density p € [0, 1] = average occupation of the site

Q:P1(l), 0’:21—927)1(0)
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Distance-headway and block-length distribution

o distance-headway probability n > 0 1O X X X0

——
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Pi(1)

n

P"(n) =P(100...01 |7 =1) =

pavel hrabak @fjfi.cvut.cz 8th September 2014 7/17



-
Distance-headway and block-length distribution

o distance-headway probability n > 0 1O X X X0

n

—
Pu+2(100...01)

n

P"(n) =P(100...01 |7 =1) =

Pi(1)
@ block-length probability m > 0 1X101010|0 %
m —_——

Pus2(011...10)

—
sz(m):p(gll...IOITozo): P1(0)

pavel hrabak @fjfi.cvut.cz 8th September 2014 7/17



-
Probability measure Pr on the trajectory space

@ Markov process (7(¢), € T), where 7(f) ~ P (stationary distribution)
e trajectory 7(+) € ST, sigma-field G C ST
e set function Pr: G — [0,1] : B+ Pr [7(-) € B]
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@ Markov process (7(¢), € T), where 7(f) ~ P (stationary distribution)
e trajectory 7(+) € ST, sigma-field G C ST
e set function Pr: G — [0,1] : B+ Pr [7(-) € B]
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Step-headway distribution

@ consider discrete time T = 7Z

@ leading particle O, following particle ©

1O %1 x %1 x 0]
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Step-headway in detail
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TASEP with forward update

@ sites are updated in forward order ..., —1,0,1,...

@ site occupied and neighbouring site empty — particle hops with probability p
or stays with probability g =1 —p

@ particle can hop up to the preceding particle
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TASEP with forward update
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@ particle can hop up to the preceding particle
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Some technical but not boring computations
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Results to be send to J. Phys. A

o distance headway distribution

Pty o) = 0=Tig T = P (n) = oo

pavel hrabak @fjfi.cvut.cz 8th September 2014 15/17



-
Results to be send to J. Phys. A

o distance headway distribution
Pu(Tiyooym) = 02 Tig" TR — P (n) = oo

@ step-headway distribution

fo(k) = —pkg " + 22 [(1 = po)t — ¢ + 22
0 qo

pavel hrabak @fjfi.cvut.cz 8th September 2014 15/ 17



-
Results to be send to J. Phys. A

o distance headway distribution

Pn(Tl,..

S Th) = 0=Tig T = Pdh(n) = oo"

@ step-headway distribution

fo(k) = —p’kq"~" + p?(: [(1—po)t —g"] + 22

qo

o time-headway distribution withp — O+ andt=p -k

f(0) =

4

g

—or __ *ijg
e+

(e7—e ") —te!

P. Hrabdk

pavel.hrabak @fjfi.cvut.cz

8th September 2014

15/17



o
Comparison with the real-traffic data

e normalization is necessary : t — s, (As) = 1
T(s) = (Anf(),  s=t/{An, (A =1/go.
T(S) = #6—5/0' + ée—s/g _ (# + é) e—S/zTg .
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Thank you for your attention!
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