Time-headways for interacting particle systems in stationary state

Pavel Hrabák

ÚTIA AS 8th September 2014

Introduction

Scope of the talk

- interacting particle systems as traffic flow models
- headway distributions in IPS

Questions to be answered

• distance-headway distribution:

• time-headway distribution

Introduction

Scope of the talk

- interacting particle systems as traffic flow models
- headway distributions in IPS

Questions to be answered

• distance-headway distribution:

"What is the probability that there is a gap of the length *n* between two consecutive vehicles/particles?"

• time-headway distribution

Introduction

Scope of the talk

- interacting particle systems as traffic flow models
- headway distributions in IPS

Questions to be answered

• distance-headway distribution:

"What is the probability that there is a gap of the length *n* between two consecutive vehicles/particles?"

• time-headway distribution

"What is the probability that there is a time interval of the length *t* between the passes of two consecutive vehicles/particles through a reference point?"

- at most one particle in site *x*
- state of x is τ_x

$$\tau_x = \begin{cases} 1 & x \text{ occupied,} \\ 0 & x \text{ empty,} \end{cases}$$

- at most one particle in site *x*
- state of x is τ_x

$$\tau_x = \begin{cases} 1 & x \text{ occupied,} \\ 0 & x \text{ empty,} \end{cases}$$

• particles hopping from x to y with probability/intenzity

$$p(x, y) \cdot \tau_x \cdot (1 - \tau_y) \cdot g(\tau(N_{x,y}))$$

- at most one particle in site *x*
- state of x is τ_x

$$\tau_x = \begin{cases} 1 & x \text{ occupied,} \\ 0 & x \text{ empty,} \end{cases}$$

 \bullet particles hopping from x to y with probability/intenzity

$$p(x,y) \cdot \tau_x \cdot (1-\tau_y) \cdot g(\tau(N_{x,y}))$$

• p(x, y) – underlying random walk

- at most one particle in site *x*
- state of x is τ_x

$$\tau_x = \begin{cases} 1 & x \text{ occupied,} \\ 0 & x \text{ empty,} \end{cases}$$

• particles hopping from x to y with probability/intenzity

$$p(x,y) \cdot \tau_x \cdot (1-\tau_y) \cdot g(\tau(N_{x,y}))$$

- p(x, y) underlying random walk
- $g(\tau(N_{x,y}))$ reaction with the neighbourhood $N_{x,y}$

• particles cannot move backwards

- particles cannot move backwards
- particles cannot overtake (*discutable*)

- particles cannot move backwards
- particles cannot overtake (discutable)

$$g(\tau(N_{x,y})) = 0 \Leftarrow \begin{cases} y < x & \text{backward movement} \\ \exists z (x < z < y)(\tau_z = 1) & \text{overtaking} \end{cases}$$

- particles cannot move backwards
- particles cannot overtake (discutable)
- the range of $N_{x,y}$ is "conditionally" restrained (for simplicity)

$$g(\tau(N_{x,y})) = 0 \Leftarrow \begin{cases} y < x & \text{backward movement} \\ \exists z (x < z < y)(\tau_z = 1) & \text{overtaking} \end{cases}$$

P. Hrabák

Stationary distribution \mathcal{P}

- state space $S = \{0, 1\}^{\mathbb{L}}$, $\mathbb{L} \subseteq \mathbb{Z}$ is a lattice
- set function $\mathcal{P}: \left(\mathcal{F} \subseteq 2^{S}\right) \to [0,1]: A \mapsto \mathcal{P}\{\boldsymbol{\tau} \in A\}$
- \mathbb{L} finite $\Rightarrow \mathcal{P}(A) = \sum_{\tau \in A} \mathcal{P}(\tau)$

8th September 2014

Stationary distribution \mathcal{P}

- state space $S = \{0, 1\}^{\mathbb{L}}$, $\mathbb{L} \subseteq \mathbb{Z}$ is a lattice
- set function $\mathcal{P}: (\mathcal{F} \subseteq 2^S) \to [0,1]: A \mapsto \mathcal{P}\{\tau \in A\}$
- \mathbb{L} finite $\Rightarrow \mathcal{P}(A) = \sum_{\tau \in A} \mathcal{P}(\tau)$

$A \subseteq S$	• • •	$ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_4$	$ au_5$	$ au_6$	$ au_7$	$ au_8$	
$ au_a $		1	0	1	0	0	0	1	1	0	
$oldsymbol{ au}_b$		1	1	1	0	0	0	1	0	0	
$ m{ au}_c $											
$ m{ au}_d $											
$ oldsymbol{ au}_e $											

Stationary distribution \mathcal{P}

- state space $S = \{0, 1\}^{\mathbb{L}}$, $\mathbb{L} \subseteq \mathbb{Z}$ is a lattice
- set function $\mathcal{P}: (\mathcal{F} \subseteq 2^S) \to [0,1]: A \mapsto \mathcal{P}\{\tau \in A\}$
- \mathbb{L} finite $\Rightarrow \mathcal{P}(A) = \sum_{\tau \in A} \mathcal{P}(\tau)$

$A \subseteq S$	 $ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_4$	$ au_5$	$ au_6$	$ au_7$	$ au_8$	
$ au_a $	 1	0	1	0	0	0	1	1	0	
$ oldsymbol{ au}_b $	 1	1	1	0	0	0	1	0	0	
$ m{ au}_c $	 1	1	1	0	0	0	1	1	0	
$ oldsymbol{ au}_d $	 0	1	1	0	0	0	1	1	0	
$ oldsymbol{ au}_e $	 0	0	1	0	0	0	1	0	1	

$$A = \{ \boldsymbol{\tau} \mid (\tau_2, \dots, \tau_6) = (10001) \}$$

• consider translational invariance of the dynamics (circle, infinite line) and $L \to +\infty$

- consider translational invariance of the dynamics (circle, infinite line) and $L \to +\infty$
- cluster probabilities

$$\mathcal{P}_n(s_1,\ldots,s_n) = \mathcal{P}\left(\tau_1 = s_1,\ldots,\tau_n = s_n\right) =$$

$$= \mathcal{P}\left(\tau_2 = s_1,\ldots,\tau_{n+1} = s_n\right) = \ldots$$

- consider translational invariance of the dynamics (circle, infinite line) and $L \to +\infty$
- cluster probabilities

$$\mathcal{P}_n(s_1,\ldots,s_n) = \mathcal{P}\left(\tau_1 = s_1,\ldots,\tau_n = s_n\right) =$$

$$= \mathcal{P}\left(\tau_2 = s_1,\ldots,\tau_{n+1} = s_n\right) = \ldots$$

Kolmogorov consistency conditions

$$\mathcal{P}_n(s_1,...,s_n) = \sum_{s} \mathcal{P}_{n+1}(s_1,...,s_n,s) = \sum_{s} \mathcal{P}_{n+1}(s,s_1,...,s_n)$$

- consider translational invariance of the dynamics (circle, infinite line) and $L \to +\infty$
- cluster probabilities

$$\mathcal{P}_n(s_1,\ldots,s_n) = \mathcal{P}\left(\tau_1 = s_1,\ldots,\tau_n = s_n\right) =$$
$$= \mathcal{P}\left(\tau_2 = s_1,\ldots,\tau_{n+1} = s_n\right) = \ldots$$

Kolmogorov consistency conditions

$$\mathcal{P}_n(s_1,\ldots,s_n) = \sum_s \mathcal{P}_{n+1}(s_1,\ldots,s_n,s) = \sum_s \mathcal{P}_{n+1}(s,s_1,\ldots,s_n)$$

• density $\varrho \in [0,1]$ = average occupation of the site

$$\varrho = \mathcal{P}_1(1), \quad \sigma := 1 - \varrho = \mathcal{P}_1(0)$$

Distance-headway and block-length distribution

• distance-headway probability $n \ge 0$

$$|\bigcirc|\times|\times|\times|\times|\bigcirc|$$

$$P^{dh}(n) = \mathcal{P}(\underbrace{100...01}_{n} \mid \tau_0 = 1) = \frac{\mathcal{P}_{n+2}(100...01)}{\mathcal{P}_1(1)}$$

Distance-headway and block-length distribution

• distance-headway probability $n \ge 0$

$$|\bigcirc|\times|\times|\times|\times|\bigcirc|$$

$$P^{dh}(n) = \mathcal{P}(\underbrace{100...01}_{n} \mid \tau_0 = 1) = \frac{\mathcal{P}_{n+2}(100...01)}{\mathcal{P}_{1}(1)}$$

• block-length probability $m \ge 0$

$$\underline{\hspace{1cm}} \times |\bigcirc|\bigcirc|\bigcirc|\bigcirc|\times|$$

$$Q^{bl}(m) = \mathcal{P}(\underline{0} \underbrace{11 \dots 1}^{m} 0 \mid \tau_0 = 0) = \frac{\mathcal{P}_{n+2}(0 \underbrace{11 \dots 1}^{m} 0)}{\mathcal{P}_{1}(0)}$$

Probability measure Pr on the trajectory space

- Markov process $(\tau(t), t \in T)$, where $\tau(t) \sim \mathcal{P}$ (stationary distribution)
- trajectory $au(\cdot) \in S^T$, sigma-field $\mathcal{G} \subseteq S^T$
- set function $\Pr: \mathcal{G} \to [0,1]: B \mapsto \Pr\left[\boldsymbol{\tau}(\cdot) \in B\right]$

$oldsymbol{ au}(\cdot)\subseteq S^{\mathbb{Z}}$	 $ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_4$	$ au_5$	$ au_6$	$ au_7$	$ au_8$	• • •
t = -1	 0	1	0	0	1	0	1	0	0	
t = 0	 0	1	0	0	0	1	1	0	0	
t = 1	 0	0	1	0	0	1	0	1	0	
t = 2	 1	0	0	1	0	0	1	0	1	
t = 3	 1	0	0	0	1	0	1	0	0	
t = 4	 0	1	0	0	0	1	0	1	0	

Probability measure Pr on the trajectory space

- Markov process $(\tau(t), t \in T)$, where $\tau(t) \sim \mathcal{P}$ (stationary distribution)
- trajectory $\boldsymbol{\tau}(\cdot) \in S^T$, sigma-field $\mathcal{G} \subseteq S^T$
- set function $\Pr: \mathcal{G} \to [0,1]: B \mapsto \Pr\left[\boldsymbol{\tau}(\cdot) \in B\right]$

$oldsymbol{ au}(\cdot)\subseteq S^{\mathbb{Z}}$	 $ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_4$	$ au_5$	$ au_6$	$ au_7$	$ au_8$	• • •
t = -1	 0	1	0	0	1	0	1	0	0	• • •
t = 0	 0	1	0	0	0	1	1	0	0	
t = 1	 0	0	1	0	0	1	0	1	0	
t = 2	 1	0	0	1	0	0	1	0	1	
t = 3	 1	0	0	0	1	0	1	0	0	
t = 4	 0	1	0	0	0	1	0	1	0	

8th September 2014

Probability measure Pr on the trajectory space

- Markov process $(\tau(t), t \in T)$, where $\tau(t) \sim \mathcal{P}$ (stationary distribution)
- ullet trajectory $oldsymbol{ au}(\cdot) \in S^T$, sigma-field $\mathcal{G} \subseteq S^T$
- set function $\Pr: \mathcal{G} \to [0,1]: B \mapsto \Pr\left[\boldsymbol{\tau}(\cdot) \in B\right]$

$oldsymbol{ au}(\cdot)\subseteq S^{\mathbb{Z}}$	 $ au_0$	$ au_1$	$ au_2$	$ au_3$	$ au_4$	$ au_5$	$ au_6$	$ au_7$	$ au_8$	• • • •
t = -1	 0	1	0	0	1	0	1	0	0	
t = 0	 0	1	0	0	0	1	1	0	0	
t = 1	 0	0	1	0	0	1	0	1	0	
t = 2	 1	0	0	1	0	0	1	0	1	
t = 3	 1	0	0	0	1	0	1	0	0	
t = 4	 0	1	0	0	0	1	0	1	0	• • •

$$B = \{ \tau(\cdot) \mid \tau_4([-1, 0, 1, 2, 3, 4]) = (1, 0, 0, 0, 1, 0) \}$$

- consider discrete time $T = \mathbb{Z}$
- leading particle O, following particle O

8th September 2014

- consider discrete time $T = \mathbb{Z}$
- leading particle •, following particle •

t = 0

• LP hops from site 0 to 1 at t = 0

- consider discrete time $T = \mathbb{Z}$
- leading particle O, following particle O

- LP hops from site 0 to 1 at t = 0
- FP hops from site 0 to 1 at $t = t_{out}$

$$t = t_{\text{out}} - 1 \qquad \frac{\begin{vmatrix} \mathbf{v} \\ \mathbf{v} \end{vmatrix} - 1}{0 \quad 1}$$

$$t = t_{\text{out}} \qquad \frac{|\vec{y}|}{0} |\vec{y}|$$

- consider discrete time $T = \mathbb{Z}$
- leading particle O, following particle O

- LP hops from site 0 to 1 at t = 0
- FP hops from site 0 to 1 at $t = t_{out}$
- step-headway probability

$$f(k) = \Pr \left(t_{\text{out}} = k \mid \text{LP } 0 \to 1 \text{ at } t = 0 \right)$$

$$t = -1$$

$$t = 0$$

$$t = t_{\text{out}} - 1$$

$$t = t_{\rm out}$$

t	 -4	-3	-2	-1	0	1	2	3	4		
-1	 0	1	0	0	1	0	1	0	0		
0	 0	1	0	0	0	1	1	0	0		
1	 0	0	1	0	0	1	_0_	1	$^{-}0^{-}$		
2	 1	0	0	1	0	0	1	0	0	• • •	
3	 1	0	0	0	1	0	1	0	0	• • •	
$-\frac{1}{4}$	 1	$-\bar{0}$	0	$\bar{0}$	1	0	0	1	$^{-}0^{-}$		
5	 1	0	0	0	1	0	0	0	1		
6	 0	1	0	0	0	1	0	0	1		

t	 -4	-3	-2	-1	0	1	2	3	4	
-1	 0	1	0	0	1	0	1	0	0	
0	 0	1	0	0	0	1	1	0	0	
$\overline{1}$	 0	0	1	$\bar{0}$	0	1	0	1	0	
2	 1	0	0	1	0	0	1	0	0	 k_1
3	 1	0	0	0	1	0	1	0	0	
$-\frac{1}{4}$	 1	$-\bar{0}$	0	$\bar{0}$	1	0	0	1	$\bar{0}$	
5	 1	0	0	0	1	0	0	0	1	
_ 6	 _0_	_ 1 _	_0_	0	0	1_	_0_	_0_	_1_	 L

• FP enters 0 after k_1 steps with probability $g(k_1)$

t	 -4	-3	-2	-1	0	1	2	3	4	
-1	 0	1	0	0	1	0	1	0	0	
0	 0	1	0	0	0	1	1	0	0	
$\overline{1}$	 0	- 0 -	1	0	0	1	0	1	0	
2	 1	0	0	1	0	0	1	0	0	
3	 1	0	0	0	1	0	1	0	0	
$-\frac{1}{4}$	 1	$-\bar{0}$ $-$	0	$\bar{0}$	1	0	0	1	$\bar{0}$	
5	 1	0	0	0	1	0	0	0	1	 $k-k_1$
_ 6	 _0_	_ 1 _	_0_	0	0	1	_0_	_0_	_1_	 L

- FP enters 0 after k_1 steps with probability $g(k_1)$
- FP hops from 0 to 1 after $k k_1$ steps with probability $h(k k_1 \mid k_1)$

t		-4	-3	-2	-1	0	1	2	3	4	
-1		0	1	0	0	1	0	1	0	0	
0		0	1	0	0	0	1	1	0	0	
$\overline{1}$		0	- 0 -	1	$\bar{0}$	0	1	0	1	0	
2		1	0	0	1	0	0	1	0	0	 k_1
3		1	0	0	0	1	0	1	0	0	
$-\frac{1}{4}$		1	$-\bar{0}$ $-$	0	$\bar{0}$	1	0	0	1	$\bar{0}$	
5		1	0	0	0	1	0	0	0	1	 $k-k_1$
6_	 	_0_	_ 1 _	_0_	_ 0	0	1	_0_	_0_	_1_	 L

- FP enters 0 after k_1 steps with probability $g(k_1)$
- FP hops from 0 to 1 after $k k_1$ steps with probability $h(k k_1 \mid k_1)$

$$f(k) = \sum_{k_1} g(k_1) \cdot h(k - k_1 \mid k_1)$$

P. Hrabák

Step-headway in detail: $g(k_1)$

• consider FP n sites behind LP at t = 0

Step-headway in detail: $g(k_1)$

- consider FP n sites behind LP at t = 0
- "What is probability of that?"

$$P(n) := \Pr(\operatorname{FP in} - n \text{ at } t = 0 \mid \operatorname{LP left} 0 \text{ at } t = 0)$$

Step-headway in detail: $g(k_1)$

- consider FP n sites behind LP at t = 0
- "What is probability of that?"
- "Thank God, we are in stationary state!"

$$P(n) := \Pr\left(\text{FP in } - n \text{ at } t = 0 \mid \text{LP left } 0 \text{ at } t = 0\right)$$
$$= \mathcal{P}\left(1 \underbrace{00 \dots 0}_{n} \mid \tau_0 = 0\right) = \underbrace{\mathcal{P}_{n+1}\left(1 \underbrace{00 \dots 0}_{n}\right)}_{\mathcal{P}_{n}(0)}$$

Step-headway in detail: $g(k_1)$

- consider FP n sites behind LP at t = 0
- "What is probability of that?"
- "Thank God, we are in stationary state!"

$$P(n) := \Pr\left(\text{FP in } - n \text{ at } t = 0 \mid \text{LP left } 0 \text{ at } t = 0\right)$$
$$= \mathcal{P}\left(1 \underbrace{00 \dots 0}_{n} \mid \tau_{0} = 0\right) = \underbrace{\mathcal{P}_{n+1}\left(1 \underbrace{00 \dots 0}_{n}\right)}_{\mathcal{P}_{1}(0)}$$

Step-headway in detail: $g(k_1)$

- consider FP n sites behind LP at t = 0
- "What is probability of that?"
- "Thank God, we are in stationary state!"

$$P(n) := \Pr \left(\text{FP in } - n \text{ at } t = 0 \mid \text{LP left } 0 \text{ at } t = 0 \right)$$
$$= \mathcal{P} \left(1 \underbrace{00 \dots 0}_{n} \mid \tau_0 = 0 \right) = \underbrace{\mathcal{P}_{n+1} \left(1 \underbrace{00 \dots 0}_{n} \right)}_{\mathcal{P}_1(0)}$$

$$g(k_1) = \sum_{n=1}^{+\infty} P(n) \cdot \Pr(k_1 \text{ steps} \mid \text{FP in } -n \text{ at } t = 0 \land \text{LP...})$$

• site 1 is free at $t = k_1$

• site 1 is free at $t = k_1$

• site 1 is occupied at $t = k_1$

• $v(k_1) := \Pr(\text{site 1 is free at } t = k_1 \mid \text{LP...})$

• site 1 is free at $t = k_1$

$$(k-k_1-1)\times 0$$

$$0 \quad 1$$

• site 1 is occupied at $t = k_1$

• $v(k_1) := \Pr(\text{site 1 is free at } t = k_1 \mid \text{LP...})$

• site 1 is free at $t = k_1$

$$(k-k_1-1) \times \underbrace{\qquad \qquad t=k}_{0 \quad 1}$$

• site 1 is occupied at $t = k_1$

• $v(k_1) := \Pr(\text{site 1 is free at } t = k_1 \mid \text{LP...})$

• site 1 is free at $t = k_1$

$$(k-k_1-1) \times \underbrace{\qquad \qquad t=k}_{0 \quad 1}$$

• site 1 is occupied at $t = k_1$

- $v(k_1) := \Pr(\text{site 1 is free at } t = k_1 \mid \text{LP...})$
- $w(k_3) := \Pr(\text{FP } 0 \to 1 \text{ after } k_3 \text{ steps } | \tau_1 = 0)$

• site 1 is free at $t = k_1$

$$(k-k_1-1) \times \underbrace{\qquad \qquad t=k}_{0 \quad 1}$$

$$(k_2-1)\times 0$$
 0
 1

- $v(k_1) := \Pr(\text{site 1 is free at } t = k_1 \mid \text{LP...})$
- $w(k_3) := \Pr(\text{FP } 0 \to 1 \text{ after } k_3 \text{ steps } | \tau_1 = 0)$

• site 1 is free at $t = k_1$

$$(k-k_1-1) \times \underbrace{\qquad \qquad t=k}_{0 \quad 1}$$

$$(k_2 - 1) \times 0 \qquad t = k_1 + k_2$$

- $v(k_1) := \Pr(\text{site 1 is free at } t = k_1 \mid \text{LP...})$
- $w(k_3) := \Pr(\text{FP } 0 \to 1 \text{ after } k_3 \text{ steps } | \tau_1 = 0)$

• site 1 is free at $t = k_1$

$$(k-k_1-1) \times \underbrace{\qquad \qquad t=k}_{0 \quad 1}$$

$$(k_2 - 1) \times 0 \qquad t = k_1 + k_2$$

- $v(k_1) := \Pr(\text{site 1 is free at } t = k_1 \mid \text{LP...})$
- $w(k_3) := \Pr(\text{FP } 0 \to 1 \text{ after } k_3 \text{ steps } | \tau_1 = 0)$
- $u(k_2) := Pr(LP 1 \rightarrow 2 \text{ after } k_2 \text{ steps } | LP \text{ in } 1)$

• site 1 is free at $t = k_1$

$$(k-k_1-1)\times \bigvee_{j \in [k]} t = k$$

$$0 \quad 1$$

$$(k - k_1 - k_2 - 1) \times \underbrace{\qquad \qquad \atop \qquad \qquad }_{t = k} t = k$$

- $v(k_1) := \Pr(\text{site 1 is free at } t = k_1 \mid \text{LP...})$
- $w(k_3) := \Pr(\text{FP } 0 \to 1 \text{ after } k_3 \text{ steps } | \tau_1 = 0)$
- $u(k_2) := Pr(LP 1 \rightarrow 2 \text{ after } k_2 \text{ steps } | LP \text{ in } 1)$

• site 1 is free at $t = k_1$

$$(k-k_1-1) \times \underbrace{t=k}_{0}$$

$$0$$
1

• site 1 is occupied at $t = k_1$

$$(k - k_1 - k_2 - 1) \times \underbrace{\qquad \qquad \atop \qquad \qquad }_{t = k} t = k$$

- $v(k_1) := \Pr(\text{site 1 is free at } t = k_1 \mid \text{LP...})$
- $w(k_3) := \Pr(\text{FP } 0 \to 1 \text{ after } k_3 \text{ steps } | \tau_1 = 0)$
- $u(k_2) := Pr(LP \ 1 \rightarrow 2 \ after \ k_2 \ steps \ | \ LP \ in \ 1)$

 τ_1, τ_2, \dots in stationary state $\forall t$

• site 1 is free at $t = k_1$

$$(k-k_1-1)\times \underbrace{0 \quad t=k}_{0 \quad 1}$$

• site 1 is occupied at $t = k_1$

$$(k - k_1 - k_2 - 1) \times \underbrace{\qquad \qquad \atop \qquad \qquad }_{t = k} t = k$$

- $v(k_1) := \Pr(\text{site 1 is free at } t = k_1 \mid \text{LP...})$
- $w(k_3) := \Pr(\text{FP } 0 \to 1 \text{ after } k_3 \text{ steps } | \tau_1 = 0)$
- $u(k_2) := Pr(LP \ 1 \rightarrow 2 \ after \ k_2 \ steps \ | \ LP \ in \ 1)$

$$\tau_1, \tau_2, \dots$$
 in stationary state $\forall t$

$$h(k - k_1 \mid k_1) = v(k_1)w(k - k_1) + [1 - v(k_1)] \cdot \sum_{k_2 = 0}^{k - k_1} u(k_2)w(k - k_1 - k_2)$$

- sites are updated in forward order $\dots, -1, 0, 1, \dots$
- site occupied and neighbouring site empty \implies particle hops with probability p or stays with probability q=1-p
- particle can hop up to the preceding particle

- sites are updated in forward order $\dots, -1, 0, 1, \dots$
- site occupied and neighbouring site empty \implies particle hops with probability p or stays with probability q = 1 p
- particle can hop up to the preceding particle

- sites are updated in forward order $\dots, -1, 0, 1, \dots$
- site occupied and neighbouring site empty \implies particle hops with probability p or stays with probability q = 1 p
- particle can hop up to the preceding particle

- sites are updated in forward order $\dots, -1, 0, 1, \dots$
- site occupied and neighbouring site empty \implies particle hops with probability p or stays with probability q=1-p
- particle can hop up to the preceding particle

- sites are updated in forward order $\dots, -1, 0, 1, \dots$
- site occupied and neighbouring site empty \implies particle hops with probability p or stays with probability q = 1 p
- particle can hop up to the preceding particle

- sites are updated in forward order $\dots, -1, 0, 1, \dots$
- site occupied and neighbouring site empty \implies particle hops with probability p or stays with probability q=1-p
- particle can hop up to the preceding particle

- sites are updated in forward order $\dots, -1, 0, 1, \dots$
- site occupied and neighbouring site empty \implies particle hops with probability p or stays with probability q=1-p
- particle can hop up to the preceding particle

- sites are updated in forward order $\dots, -1, 0, 1, \dots$
- site occupied and neighbouring site empty \implies particle hops with probability p or stays with probability q = 1 p
- particle can hop up to the preceding particle

- sites are updated in forward order $\dots, -1, 0, 1, \dots$
- site occupied and neighbouring site empty \implies particle hops with probability p or stays with probability q = 1 p
- particle can hop up to the preceding particle

- sites are updated in forward order $\dots, -1, 0, 1, \dots$
- site occupied and neighbouring site empty \implies particle hops with probability p or stays with probability q=1-p
- particle can hop up to the preceding particle

- sites are updated in forward order $\dots, -1, 0, 1, \dots$
- site occupied and neighbouring site empty \implies particle hops with probability p or stays with probability q = 1 p
- particle can hop up to the preceding particle

$$p(x, x + n) = p^{n}q, \quad g(N_{x,x+n}) = \begin{cases} 1 & \tau_{x+j} = 0, j \le n \land \tau_{x+n+1} = 0, \\ 1/q & \tau_{x+j} = 0, j \le n \land \tau_{x+n+1} = 1, \\ 0 & \text{otherwise} \end{cases}$$

Some technical but not boring computations

Results to be send to J. Phys. A

• distance headway distribution

$$\mathcal{P}_n(\tau_1,\ldots,\tau_n)=\varrho^{\sum \tau_j}\sigma^{n-\sum \tau_j} \implies P^{dh}(n)=\varrho\sigma^n$$

Results to be send to J. Phys. A

distance headway distribution

$$\mathcal{P}_n(\tau_1,\ldots,\tau_n) = \varrho^{\sum \tau_j} \sigma^{n-\sum \tau_j} \implies P^{dh}(n) = \varrho \sigma^n$$

step-headway distribution

$$f_{\to}(k) = -p^2 k q^{k-1} + \frac{p\sigma}{\varrho} \left[(1 - p\sigma)^k - q^k \right] + \frac{p\varrho}{q\sigma} \left[\left(\frac{q}{1 - p\sigma} \right)^k - q^k \right]$$

Results to be send to J. Phys. A

distance headway distribution

$$\mathcal{P}_n(\tau_1,\ldots,\tau_n) = \varrho^{\sum \tau_j} \sigma^{n-\sum \tau_j} \implies P^{dh}(n) = \varrho \sigma^n$$

step-headway distribution

$$f_{\to}(k) = -p^2kq^{k-1} + \frac{p\sigma}{\varrho} \left[(1 - p\sigma)^k - q^k \right] + \frac{p\varrho}{q\sigma} \left[\left(\frac{q}{1 - p\sigma} \right)^k - q^k \right]$$

• time-headway distribution with $p \rightarrow 0+$ and $t = p \cdot k$

$$f(t) = \frac{\varrho}{\sigma} \left(e^{-\varrho t} - e^{-t} \right) + \frac{\sigma}{\varrho} \left(e^{-\sigma t} - e^{-t} \right) - t e^{-t}$$

Comparison with the real-traffic data

• normalization is necessary : $t \to s$, $\langle \Delta s \rangle = 1$

$$\tau(s) = \langle \Delta t \rangle f(t), \qquad s = t/\langle \Delta t \rangle, \qquad \langle \Delta t \rangle = 1/\varrho \sigma.$$

$$\tau(s) = \frac{1}{\sigma^2} e^{-s/\sigma} + \frac{1}{\varrho^2} e^{-s/\varrho} - \left(\frac{1}{\sigma^2} + \frac{1}{\varrho^2}\right) e^{-s/\sigma\varrho}.$$

• "particle-hole" symmetry $\rho \leftrightarrow 1 - \rho$

Thank you for your attention!

8th September 2014