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Abstrakt:

Tato diplomová práce představuje novou metodu pro segmentaci sńımk̊u poř́ızených

mikroskopem s fázovým kontrastem. Ćılem je oddělit buňky od pozad́ı.

Algoritmus je založen na variačńı formulaci level set metod, tedy na minimalizaci

funkcionálu popisuj́ıćıho level set funkci. Funkcionál je minimalizován gradientńım

tokem popsaným evolučńı parciálńı diferenciálńı rovnićı.

Nejd̊uležitěǰśı nové myšlenky jsou inicializace pomoćı prahováńı a nové členy ve

funkcionálu, které zrychluj́ı konvergenci a zpřesňuj́ı výsledky. Také jsme použili

nové funkce napsané v jazyce C k poč́ıtáńı gradientu a Laplaceova operátoru. Tato

implementace je třikrát rychleǰśı než standardńı funkce v MATLABu.

Dosáhli jsme lepš́ıch výsledk̊u než algoritmy, se kterými jsme metodu porovnávali.
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Abstract:

This master thesis presents a new method for segmentation of phase-contrast

microscopic images of cells. The goal is to segment the cells from the background.

The algorithm is based on the variational formulation of the level set method, i.e.

minimizing of a functional, which describes the level set function. The functional

is minimized by a gradient flow described by an evolutionary partial differential

equation.

The most significant new ideas are initialization using thresholding and intro-

ducing new terms that speed up the convergence and achieve more accurate results.

Moreover, we speed up the evaluation of gradient and Laplace operator using new

functions written in C language. The new implementation is three times faster than

the standard functions in MATLAB.

We compared the results with other algorithms and we achieved better accuracy.
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1 Introduction

Image segmentation is one of the most important parts of digital image process-

ing. It entails automatic division of an image into regions with similar attributes

such as colour, intensity or texture. The typical goal of image segmentation is the

identification of background and objects in the foreground.

Image segmentation is applicable in many disciplines, e.g. machine vision, ob-

ject detection, astronomy or recognition tasks, such as face recognition, fingerprint

recognition or license plates recognition [10, 17]. Another important discipline of

image segmentation applications is medicine. Medical imaging is used e.g. for au-

tomatic locating of tumors and other pathologies, surgery planning or intra-surgery

navigation.

The images we process are microscopic images of cells. Live cell imaging captures

crucial information of many biological processes with direct implication for human

health [16, 9, 14, 7]. The analysis of our images is used for the development of body

implants, see [19]. The human body is very sensitive to foreign materials, unsuitable

implants may cause immune reactions. Therefore, the biocompatibility or biotoxicity

of various materials is studied.

Current methods of image segmentation are developed based on laboratory ex-

periments in vitro which are not as expensive or time consuming as the testing of

materials in clinical studies. The images we process come from experiments in vitro

using cancer cells due to their resistance and easy laboratory preservation. It is

assumed that if the cancer cells are not able to survive in the testing environment,

then neither the normal body cells can survive.

The cells are scanned with a microscope at regular time intervals, in our case

every 2 minutes. The images are analyzed to determine the rate of cell growth, i.e.

this leads to the problem of segmentation of cells from the background. The evolution

of area covered by cells describes the desired rate of cell growth.

The main goal is to find an efficient algorithm since the segmentation is usually

performed manually which is a tedious and time consuming work.
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Automatic segmentation is a complicated problem in itself and in our case there

are several factors that make our task even more difficult. The microscopic images

contain artifacts like halos, bright areas around the cell borders. The colour of

the background is inconveniently similar to the colour of the cell interiors. The

microscopic images also suffer from poor focus and impurities.

There are various segmentation methods in the literature cf. [21] for an overview.

In this thesis, we focus on the method of active contours and its level set formulation.

We use the level set method introduced by Osher [13]. The main idea behind the

level set method is that a curve can be seen as the implicitly given zero level set of a

function in higher dimension. The goal is to capture and analyze the motion of the

curve during the calculation. Instead of moving the curve itself, we will be moving

the level set function.

The proposed algorithm is based on the variational formulation of the level set

method, i.e. minimizing of a functional. The functional describes the interface

separating the cell clusters from the background. The interface is given implicitly

by the level set function. The functional is minimized by an evolutionary partial

differential equation describing its gradient flow. The equation is then discretized

with the finite difference method.

We present a functional proposed in [8] and we incorporate new terms into its

gradient flow that speed up the evolution and help to achieve more accurate results.

The method is simple and versatile.

The following chapter gives mathematical background and description of our

method. We discuss segmentation as a variational method and define evolution of

explicit and implicit curves, as well as the level set method and the gradient flow

formulation. Implementation and numerical scheme is explained in the third chapter.

We also present different approaches of initialization and automatic optimization

of weighting parameters in the third chapter. The last chapter entails numerical

experiments. The results are presented and compared with another algorithm.
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2 Method Description

In the following sections we derive the mathematical formulation of the level set

method, first suggested in [13]. We will introduce our method and explain each

term in our functional and its importance. We will assume that all functions and

functionals satisfy conditions needed for the theoretical derivation of the method.

2.1 Mathematical Formulation

Digital Images

In the next sections, we will derive the method generally for functions defined in the

following section and then we will apply it for the digital images. To keep up with

the general formulation, we explain the digital images first.

An image u is a two dimensional function

u : Ω→ R,

where Ω ⊂ R2 is the image support.

A digital image is a numerical representation of a two dimensional image, i.e.

it is a discrete function. The digital image is described by discrete points, called

pixels. The pixels are arranged in a grid and each pixel has its position, represented

by the space coordinates, and colour. The colour is also discretized and its values

are natural numbers between 0 and 255. In the case of grayscale images, a pixel

with the value 0 represents a black pixel, the pixel with the value 255 is a white

pixel. Coloured images can be represented by RGB colour model, which is a triplet

of intensity values of red, green and blue colours.
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2.1.1 Segmentation As a Variational Method

Let X be a Banach space, uεX and F : X → R. We will assume that X is a

space of sufficiently regular functions. Calculus of variations then solves

min
u∈X

F (u), (1)

which will play a key role in our method.

Let us denote the partial derivative of u with respect to the variable xi as ∂u
∂xi

or

uxi and let du
dxi

be the total derivative with respect to xi.

We will be using integral functionals in this thesis. In the case of images an

example of the integral functional can be

F (u)=

ˆ

Ω

f(x, u(x),∇u(x))dx,

where x ∈ R2 are space coordinates (x1, x2), Ω ⊂ R2 is the image support, u :

Ω → [0, 255] is a grayscale image (in case of a RGB image u : Ω → [0, 255]3),

∇u = (ux1 , ux2) is the image gradient and f is a function that specifies our functional

and is twice continuously differentiable.

To solve (1) we will use the Euler-Lagrange equation. For simplicity, we will

derive the one-dimensional Euler-Lagrange equation in the next paragraphs. The

two-dimensional version is derived analogically. We will use the following functional:

F (u)=

bˆ

a

f(x, u(x), u′(x))dx,

where a, b ∈ R, a < b, u : [a, b] → R, u′ is its derivative and f is twice continuously

differentiable.

Before deriving the Euler-Lagrange equation, some useful lemmas will be re-

minded first.

Lemma. Let g : Rm → R, hi : Rn→R, for i = 1, . . .m, x ∈ Rn, h(x) = (h1(x), . . . , hm(x)) .

The chain rule expresses a formula for computing the derivative of the composition

g(h(x)):

∂g

∂xi
=

m∑
l=1

∂g

∂h

∂hl
∂xi

. (2)

4



Lemma. Let [a, b] be an interval and g, h : [a, b] → R. Integration by parts for

functions g and h states:

bˆ

a

(gh′) dx = gh|ba −
bˆ

a

(g′h) dx, (3)

where gh|ba = g(b)h(b)− g(a)h(a).

Lemma. Fundamental lemma of the calculus of variations: Let g be a continuous

function on the interval [a, b]. If

bˆ

a

g(x)h(x)dx = 0 (4)

for every function h ∈ L2 [a, b] , then

g(x) = 0, for all xε(a, b).

Now we can derive the Euler-Lagrange equation. As mentioned above we seek

an extremum, specifically the minimum, of the functional F (u). If u ∈ X is an

extremum of F then from differential calculus it follows that it has to fulfil the

necessary condition

d

dε
F (u+ εv)|ε=0 = 0 ∀v,

where v ∈ X and d
dε
F (u+εv)|ε=0 is the derivative of the functional F in the direction

v. For

F (u+ εv)=

bˆ

a

f(x, u+ εv, u′ + εv′)dx

we get

d

dε
F (u+ εv)=

d

dε

bˆ

a

f(x, u+ εv, u′ + εv′)dx.
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Because we assume f ∈ C2 and [a, b] is finite, then we can interchange the derivative

and the integral:

d

dε
F (u+ εv)=

bˆ

a

d

dε
f(x, u+ εv, u′ + εv′)dx.

Applying the chain rule (2) and omitting the arguments (x, u + εv, u′ + εv′) for

simplicity, we obtain

d

dε
F (u+ εv)=

bˆ

a

(
∂f

∂u
v +

∂f

∂u′
v′
)
dx.

Using integration by parts (3) on the last term on the right hand side of the equation

we get

d

dε
F (u+ εv) =

bˆ

a

∂f

∂u
vdx−

bˆ

a

d

dx

(
∂f

∂u′

)
vdx+

∂f

∂u
v|ba

=

bˆ

a

[
∂f

∂u
− d

dx

∂f

∂u′

]
vdx+

∂f

∂u
v|ba.

Since we assumed that d
dε
F (u+ εv)|ε=0 = 0, we get

d

dε
F (u+ εv)|ε=0 =

bˆ

a

[
∂f

∂u
− d

dx

∂f

∂u′

]
(x, u, u′)vdx+

+
∂f

∂u
v|ba = 0 ∀v ∈ X. (5)

In order to enforce
∂f

∂u
v|ba = 0,

we will assume suitable boundary conditions, i.e. v(a) = v(b) = 0. Therefore for (5)

to be equal to 0 for any v satisfying the boundary conditions, we use the fundamental

lemma of the calculus of variations (4) and we obtain the following equation:[
∂f

∂u
− d

dx

∂f

∂u′

]
(x, u, u′) = 0. (6)
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Figure 1: Interface - a set of curves dividing a plane into a background and a fore-
ground.

The equation (6) is called the Euler - Lagrange equation.

Analogically to (6) we can now define the Euler-Lagrange equation in n dimen-

sions.

Definition. If u : Rn → R is the extremum of F (u)=
´

Ω
f(x, u(x),∇u(x))dx, where

∇u ≡ (ux1 , ..., uxn) , then

F ′(u) =
∂f

∂u
(x, u,∇u)−

n∑
i=1

d

dxi

(
∂f

∂uxi
(x, u,∇u)

)
= 0, (7)

which is the Euler-Lagrange equation.

2.1.2 Definition of Level Set Method

The level set method was first introduced by Osher and Sethian [13] as a simple

and versatile method for numerical analysis of the motion of an interface.

An interface is a hyperplane, i.e. a subspace of dimension n − 1, which divides

the space into two subspaces. In two dimensions, an interface is a finite set of closed

curves, see (9), that divides the plane into the exterior and the interior, i.e. the

background and the foreground. An interface in two dimensions is shown in Figure

1.

To describe the level set method we first define some terms. Let us denote the

interface as c in Rn and the open region it is bounding as c+ and the background as

c−.
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Definition. Let φ : Rn
�R be a cotinuous function that is not identically zero on

any open set. A level set of a function φ is a set where the values of the function are

equal to a given constant k:

Lk(φ) = {(x1, . . . , xn)|φ(x1, . . . , xn) = k}.

A level set with the given constant of 0 is called a zero level set. In two dimensions

a level set is generally a set of curves, called a level curve.

Level set methods use level sets as a tool for capturing the motion of interfaces.

Definition. The function φ from the previous Definition is called the level set func-

tion. We will assume that the level set function also depends on time, so φ : Rn+1
�R,

and denote the first variable as t and x = (x1, . . . , xn).

We will denote the interior and exterior of φ as φ− and φ+, respectively:

φ−(t) = {x ∈ Ω : φ(t, x) < 0}

φ+(t) = {x ∈ Ω : φ(t, x) > 0} (8)

c(t) = {x ∈ Ω : φ(t, x) = 0}

In the case of images we assume n = 2, thus the level set c is a curve or set of

curves, c+ corresponds to φ+ and c− corresponds to φ−. We will also consider only

the zero level sets. In two dimensions, we will use the notation (x, y) instead of

(x1, x2) .

The main idea behind the level set method is that a curve can be seen as the

implicitly given zero level set of a function in higher dimension, which is illustrated

in Figure 2. The red curve in Figure 2 represents the zero level set.

The goal is to capture and analyze the motion of the curve c in time. Instead

of moving the curve itself, we will be moving the level set function. This is the

philosophy of level set methods.

The statement in the previous paragraph has great consequences for numerical

computations. Primarily the topological changes of the curves represented by the

level set function, such as merging or breaking, are performed naturally during the
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Figure 2: Illustration of the level set. The curve in the plane on the left side can be
seen as a level set of a function in higher dimension shown on the right side.

Figure 3: Illustration of topological changes of the interface during evolution of the
level set function.

evolution as shown in the Figure 3. Second, the numerical approximation of a level

set function stays on a fixed grid, which allows easy numerical approximation of

differential equations governing the motion of c, e.g. finite-difference schemes. In

addition, geometry elements, such as curvatures and normal vectors, can be directly

computed from φ, as will be described later.

2.1.3 Evolution of Explicit and Implicit Curves

This section presents a brief introduction of curve representation and curve evo-

lution. We will describe explicit parametric curves and curves given implicitly.
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A time dependent closed parametric curve, denoted by c, is a continuous function

c : R+ × [0, 1]→ Ω ⊂ R2, c(t, 0) = c(t, 1),

c(t, q) = [c1(t, q), c2(t, q)]. (9)

Let us define some important geometrical terms: tangent and normal vectors and

curvature.

The first derivative of the curve is called the tangent vector :

t = c′(t, q) =

(
∂c1

∂q
(t, q),

∂c2

∂q
(t, q)

)
,

the derivative c′, as in this whole paper, is the derivative with respect to q, similarly

the second derivative c′′.

The unit normal vector, omitting the arguments (t, q) for simplicity, is:

n =
(c′)⊥

|c′|
=

(
−∂c2

∂q
, ∂c1
∂q

)
√(

∂c1
∂q

)2

+
(
∂c2
∂q

)2
,

where (c′)⊥ is orthogonal to c′ and |.| is the Euclidean norm.

Intuitively, the curvature κ tells how fast the curve deviates from the tangent

direction in a given point. The curvature is the length of the normal direction

component of the second derivative. The curvature is defined as, see [12],

κ = ‖t′‖ . (10)

We are interested in the motion of a curve over time and will consider evolution

only in normal direction since it is geometrically relevant:

∂c

∂t
(t, q) = F (t, q)n(t,q), (11)

where F is a certain speed function. Such models describes e.g. crystal growth and

F may depend e.g. on the curvature [12].

Another approach is to define a curve implicitly. At all times the curve is repre-
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sented by the zero level set of a level set function φ(t, x, y):

φ(t, c(t, q)) = 0. (12)

In the implicit formulation normal and curvature take the following forms, see [12]:

n =
∇φ
|∇φ|

and the curvature is

κ = ∇ · ∇φ
|∇φ|

= div

(
∇φ
|∇φ|

)
, (13)

where div v = ∂v1
∂x

+ ∂v2
∂y
, for v : R2 → R.

In the level set method, the function φ can be any arbitrary function as long as

its zero level set matches the contour.

Differentiating the equation (12) with respect to t it follows that time derivative

is zero,

0 =
∂

∂t
φ(t, c(t, q)) = (∇φ) (t, c(t, q)) · ∂c

∂t
(t, q) +

∂φ

∂t
(t, c(t, q)),

where we applied the chain rule (2) for the second equality. We then obtain an

evolution equation for φ, omitting the arguments:

∂φ

∂t
= −∇φ · ∂c

∂t
,

using (11) we get
∂φ

∂t
= −∇φ · Fn.

The equation (12) is satisfied on the curve c(t, q), we reformulated it as an equation

for φ and we will extend it for all x, t. Since n = ∇φ
|∇φ| , the evolution equation can be

written in the following general form [13]:

∂φ

∂t
= −F |∇φ|,

where we omitted the arguments (t, x, y).

Definition. The equation
∂φ

∂t
= −F |∇φ|

11



is called the level set equation.

The function F is called a speed function.

2.1.4 Variational Formulation of the Level Set Method

Early level set methods are usually represented as an evolutionary partial differential

equation (PDE) of a parametrized curve in a Lagrangian framework converted to an

evolutionary PDE for a level set function using an Eulerian framework. In this thesis,

we present the evolution PDE as a variational problem [13, 12], thus minimizing an

energy functional defined on the level set function.

The variational formulation of level set methods is more convenient for incor-

porating additional information about the desired solution. This property will be

utilized later to eliminate the need of re-initialization procedure during implementa-

tion. Moreover, we will make use of the particular characteristics of the microscopic

images of cells and introduce a new variance term in the gradient flow of the curve.

An explicit energy functional E(φ) will be defined, so that the zero level curve of

the minimizer φ captures the desired features in an image, in our case the cell edges.

The energy functional has two parts:

E(φ) = Em(φ) + µP (φ), (14)

where µ > 0 is a weighting parameter and φ does not depend on t. The energy

Em(φ) depends on the image data, therefore it is called the external energy. The

energy P (φ) is a function of φ only, it is called the internal energy.

The internal energy P (φ) helps to produce more stable and robust results. In

implementations of the traditional level set methods, it is numerically important to

maintain the level set function close to a signed distance function [8]. The value

of the signed distance function of a curve c in a given point x ∈ Ω determines the

distance of x from c, with the sign defined by whether x is in the interior or exterior

of c.
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Definition. The signed distance function f of a set of curves c is defined by

f(x) =

d(x, c) for x ∈ c−

−d(x, c) for x ∈ c+
,

where d(x, c) is the distance of x from c.

From the definition, the signed distance function must satisfy

|∇f(x, t)| = 1 a.e. x ∈ Ω, ∀t. (15)

This property of the signed distance function simplifies the formulas, e.g. the formula

of curvature (13) is κ = div (∇φ) = 4φ. Using the signed distance function also

improves properties of the numerical approximation [1], e.g avoiding steep gradients.

During the evolution the level set function may develop irregularities, which can

make further results highly inaccurate. Therefore, it is convenient for φ(t) to be a

signed distance function for all t.

One approach is a periodical re-initialization of the level set function. Re-

initialization constructs from φ the signed distance function φ̃, which maintains the

zero level set, {φ = 0} . However, this technique has undesirable side-effects and it

still remains a serious question of when and how to apply the re-initialization pro-

cess. Li et al. [8] introduced a new internal energy term that penalizes the deviation

of the level set function from the signed distance function property (15). Therefore

the re-initialization is no longer necessary. In this thesis, we will use the following

integral, proposed by them, as a metric to measure the distance between φ and a

signed distance function:

P (φ) =

ˆ
Ω

1

2
(|∇φ| − 1)2 dxdy. (16)

We used the property (15). This metric will play a key role in our level set formula-

tion.

The variational level set formulation proposed in [8] has also other advantages

than re-initialization. In implementation of the gradient flow, defined later, a larger

time step can be used comparing to the traditional formulation, which significantly

speeds up the evolution. Furthermore, the level set function is no longer necessarily

initialized as the signed distance function at t = 0. More general functions can be

used that are easier to implement than the signed distance function. And finally, the
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evolution can be implemented with a simple finite-difference scheme.

Our method uses the functional proposed in [8] and improves it for our problem.

We first describe the functional which we want to minimize, then the gradient flow

that minimizes it and finally we will present two terms, which we added to the

gradient flow. One is our new variance term, the other one is a mean value term.

Before looking at the functional, some useful functions will be presented first.

Definition. The Heaviside step function (Heaviside function):

H(x) =

1, x ≥ 0

0, x < 0
. (17)

The Dirac delta distribution (delta distribution) δ(x) is the distributive derivative

of the Heaviside function, [5]. It satisfies

ˆ ∞
−∞

δ(x)dx = 1. (18)

To achieve that the minimizer φ finds the object boundaries, we define the edge

indicator function.

Definition. Let I be an image. We define the edge indicator function g : Ω→ R as

g =
1

1 + |∇ (Gσ ∗ I) |2
,

where Gσ is the Gaussian kernel with standard deviation σ, ∗ means convolution.

Convolution of the image with the Gaussian kernel, Gσ ∗ I , slightly blurs the

image in order to eliminate noise which creates false edges. The size of the gradient

of the blurred image, |∇ (Gσ ∗ I) | , is largest at the edges. Since we will use the

edge indicator function in the minimization problem and we seek edges, we use

the multiplicative inverse. To make sure we never divide by zero we add 1 to the

denominator which also ensures that the values of g are between 0 and 1. The edge

indicator function is thus minimal at the image edges.
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We define the external energy as

Em(φ) = λL(φ) + αA(φ), (19)

where λ > 0, α are constants and the terms L(φ) and A(φ) are defined as

L(φ) =

ˆ
Ω

gδ(φ)|∇φ|dxdy (20)

and

A(φ) =

ˆ
Ω

gH(−φ)dxdy, (21)

where δ is the delta distribution (18) and H is the Heaviside function (17).

It is well known [20] that the geometrical meaning of the energy L(φ) is the

length of the zero level curve of the level set function φ in the conformal metric

ds = g(c(q))|c′(q)|dq, where c(q), q ∈ [0, 1] is the zero level curve. Thus the functional

L(φ) minimizes the length and therefore has a smoothing effect on the zero level

curve.

The energy functional A(φ) minimizes the area of the region Ω− and is proposed

to speed up the curve evolution. If g ≡ 1, then A(φ) computes the area of Ω−. The

coefficient α in (19) can take positive or negative values, depending on the position

of the initial contour to the object we want to detect. In our case the initial contour

will be placed outside the cells, therefore the coefficient α should be positive, so that

the contours shrink faster. Analogically, if the initial contour lays inside the object,

α should take a negative value.

Definition. The total energy functional is defined by

E(φ) = µP (φ) + Em(φ)

= µ

ˆ
Ω

1

2
(|∇φ| − 1)2 dxdy +

+λ

ˆ
Ω

gδ(φ)|∇φ|dxdy + α

ˆ
Ω

gH(−φ)dxdy. (22)
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2.1.5 Gradient flow formulation

We seek the stationary solution of the energy functional E given by (22), which is

computed using the Euler-Lagrange equation (7). The gradient flow that minimizes

E, is the following evolutionary equation:

∂φ

∂t
= −∂E

∂φ
= −E ′, (23)

which is equivalent to solving the variational problem with the steepest-descent

method.

To explicitly express the gradient flow we need to compute and express ∂E
∂φ
. We

apply the Euler-Lagrange equation (7) to the functional (22). The derivative is a

linear operator, so we use the Euler-Lagrange equation separately for each term.

The penalizing term P (φ) is then

P (φ) =

ˆ
Ω

1

2
(|∇φ| − 1)2 dxdy

=
1

2

ˆ
Ω

|∇φ|2dxdy −
ˆ

Ω

|∇φ|dxdy +

ˆ
Ω

1

2
dxdy

= P1(φ)− P2(φ) +

ˆ
Ω

1

2
dxdy, (24)

where P1(φ) = 1
2

´
Ω
|∇φ|2dxdy and P2(φ) =

´
Ω
|∇φ|dxdy. Using the following

|∇φ| =
√
φ2
x + φ2

y

and denoting f (x, φ,∇φ) = 1
2
|∇φ|2 = 1

2

(
φ2
x + φ2

y

)
, we use the Euler-Lagrange equa-

tion on (24) and we get

P ′1(φ) =
∂f

∂φ
(x, φ,∇φ)− d

dx

(
∂f

∂φx
(x, φ,∇φ)

)
− d

dy

(
∂f

∂φy
(x, φ,∇φ)

)
= −φ2

xx − φ2
yy

= −4φ, (25)

where 4 is the Laplace operator. For P 2(φ) we get

P ′2(φ) = − d

dx

φx√
φ2
x + φ2

y

− d

dy

φy√
φ2
x + φ2

y

= −div

(
∇φ
|∇φ|

)
. (26)
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The last integral in (24) vanishes using the Euler-Lagrange equation. Therefore the

derivative of the penalizing term is

P ′(φ) = −4φ+ div

(
∇φ
|∇φ|

)
. (27)

To compute L′(φ), see (20), we need

∂

∂φ
(g(x)δ(φ)|∇φ|) = g(x)δ′(φ)|∇φ| (28)

and

−
∑

xi∈{x,y}

d

dxi

(
∂

∂φxi
(g(x)δ(φ)|∇φ|)

)
= −div

(
g(x)δ(φ)

∇φ
|∇φ|

)
, (29)

where we used (26). Let u be a scalar function, v a vector function. We will use the

following identity for the divergence of their product:

div(uv) = ∇u · v + u div v, (30)

where ∇u · v is their inner product. Denoting u = δ(φ) and v = g(x) ∇φ|∇φ| , we use

(30) and obtain

div

(
g(x)δ(φ)

∇φ
|∇φ|

)
= ∇ (δ(φ)) ·

(
g(x)

∇φ
|∇φ|

)
+ δ(φ)div

(
g(x)

∇φ
|∇φ|

)
. (31)

We will further focus on the first term on the right hand side of the equation. Because

g(x) is scalar, we can rewrite the term as follows:

∇ (δ(φ)) ·
(
g(x)

∇φ
|∇φ|

)
= g(x)δ′(φ)

∇φ · ∇φ
|∇φ|

= g(x)δ′(φ)|∇φ|. (32)

Substituting (32) into the divergence term (31), then into (29) and together with

(28) into the Euler-Lagrange equation (7) we obtain

L′(φ) = −δ(φ)div

(
g(x)

∇φ
|∇φ|

)
. (33)

The terms (28) and (32) are subtracted.

The last term in our functional is the area term A(φ), see (21). Using the Euler-
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Lagrange equation (7) we obtain

A′(φ) = −g(x)δ(φ). (34)

Substituting the derivatives of the individual functional terms into the functional

we get the derivative of the total energy, its negative being the desired gradient flow

(23).

The gradient flow is then defined by

∂φ

∂t
= −E ′(φ) = µ

[
4φ− div

(
∇φ
|∇φ|

)]
+

+λδ(φ)div

(
g(x)

∇φ
|∇φ|

)
+ αg(x)δ(φ). (35)

To improve the speed and accuracy of the evolution we have incorporated new

terms to the gradient flow suggested in [8].

The first term is called the data term D(φ). The data term uses the mean values

of image intensity of areas currently assigned as background, denoted as m1, or

objects, denoted as m2. Consequently, it drives the motion of the level set curve of φ

towards one of them, depending on whether the intensity of a point is more similar

to either m1 or m2. The data term is defined by

D(φ) = βδ(φ)
(
− (I −m1)2 + (I −m2)2) , (36)

where β > 0 is a weighting parameter, δ is the delta distribution (18). The delta

distribution selects only the zero level curve from the domain of φ. Since we assume

that values of φ are negative inside the zero level curve and positive outside (8), we

either add or subtract the difference between the intensity and the mean intensities

(36), which speeds up the evolution.

Since our application is the segmentation of cell images, we can assume similar

features of the images. The typical microscopic cell image we encounter is shown

in the Figure 4. The cell center is of a similar colour as the background and forms

a visual edge inside the cell. As a consequence, a contour may form inside the

cell, which is shown in the Figure 5. To avoid the undesirable interior contour we

introduce a new term, which we call the variance term V. It works on the assumption
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Figure 4: Typical image of a cell.

Figure 5: An undesirable contour inside a cell.
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that the variance of background is significantly smaller than variance of the cells. It

is defined similar to the data term but instead of the mean values of image intensity

it uses the mean values of variance and compares it with the variance of a given

point. The variance term is then

V (φ) = ρδ(φ)
(
− (V ar − v1)2 + (V ar − v2)2) , (37)

where ρ > 0 is a weighting parameter, V ar is the variance of the image on a neigh-

bourhood of a given point, v1 is the mean exterior variance and v2 is the mean interior

variance.

Definition. The gradient flow is then defined by

δφ

δt
= −E ′(φ) = µ

[
4φ− div

(
∇φ
|∇φ|

)]
+ λδ(φ)div

(
g(x)

∇φ
|∇φ|

)
+

+αg(x)δ(φ) + βδ(φ)
(
− (I −m1)2 + (I −m2)2)+

+ρδ(φ)
(
− (V ar − v1)2 + (V ar − v2)2) . (38)

This is the equation we will solve by finite differences in the next chapter. The

equation with suitable parameters also leads to the results presented in the last

chapter.
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3 Implementation

The first section of this chapter describes the numerical scheme used for calculations.

In the second section we present three different approaches of initialization and we

focus on the optimization of parameters in the last section.

3.1 Numerical scheme

In practice, the delta distribution (18) and the Heaviside function (17) are approxi-

mated by the smooth functions defined by

δε(x) =

0, |x| > ε,

1
2ε

[
1 + cos

(
πx
ε

)]
, |x| ≤ ε,

Hε =


0, x < −ε,

1, x > ε,

1
2

(
1 + x

ε
+ 1

π
sin
(
πx
ε

))
, |x| ≤ ε.

For all our experiments we set the parameter ε to 1, which is the width of a pixel.

The derivatives of φ are approximated by finite differences. We use the central

and forward differences, which are defined in one dimension as follows, see [6].

Definition. Let f : R→ R be a function and h > 0.

The forward difference is given by

4h[f ](x) = f(x+ h)− f(x).

The derivative of f approximated by the forward difference is then

∂f(x)

∂x
∼=
4h[f ](x)

h
=
f(x+ h)− f(x)

h
(39)

21



The central difference is defined as

δh[f ](x) = f(x+
1

2
h)− f(x− 1

2
h),

the derivative approximated by the central difference is defined analogically as (39).

The spatial derivatives ∂φ
∂x

and ∂φ
∂y

are approximated by the central difference with

fixed space steps h = 4x = 4y = 1. The time derivative ∂φ
∂t

is approximated with

the forward difference.

The level set function φ(t, x, y) is discretized as φki,j, where (i, j) is a space index

and k is a time index. Then, the level set evolution using the gradient flow (38) can

be written as
φk+1
i,j − φki,j

τ
= F (φki,j), (40)

where F (φki,j) is the approximation of the right hand side of (38) and τ is a time

step. The difference equation (40) can be expressed as an iteration process.

Definition. The iteration process used in the numerical implementation is

φk+1
i,j = φki,j + τF (φki,j).

Computation of the Gradient and Laplace operator

We speed up the evaluation of the gradient and Laplace operator using new functions,

based on the central differences, written in the C language. For computing the

gradient, we used the code available online, written by Jan Simon [18]. We modified

this code to implement the Laplace operator. The new implementations are about

three times faster than the standard functions in MATLAB.

3.2 Initialization of the Level Set Function

In the traditional level set formulation it is important to initialize the level set func-

tion φ as a signed distance function φ0. If the initial function significantly differs from

a signed distance function, the re-initialization processes are not able to re-initialize

the function to a signed distance function [8].
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In our formulation the re-initialization process can be omitted due to the new

penalizing term (16). We also use initial functions that are significantly different

from a signed distance function. The penalizing term may not be able to maintain

the level set function φ as an approximation of a signed distance function globally

on the entire image domain but it keeps it as the approximation locally near the zero

level curve.

In our first numerical experiments, we used an initial function similar to the one

proposed in [8]. Since it was too slow, we suggested two different approaches.

The best results come from the initialization by thresholding the image of variance

described later in this section. This approach is remarkably fast.

3.2.1 The Original Initialization

Let Ω0 be a subset in the image domain Ω. We define the initial level set function

φ0 by

φ0 =

−1, (x, y) ∈ Ω0,

1, (x, y) ∈ Ω− Ω0.

Since we assume initialization outside the cells and set the weighting parameters

according to that, see Section 2.1.4, we define the region Ω0 as a rectangle 8 pixels

smaller than the image, which is centered in the image.

As an example of this initialization, we present numerical results of segmentation

in Figure 6. Although the image is only a cutout, it needs too many iterations

to reach the result. The parameters in the gradient flow (38) were chosen based

on numerical experiments to achieve the best possible accuracy and speed of the

evolution. We cut the image of a cluster of cells from an original image. The size of

the original image is 960 × 1280 pixels, the cutout has 216 × 206 pixels. With the

initialization described in this section, the algorithm needs 1650 iterations to reach

the boundary of the cluster. Therefore we suggested more efficient initializations,

which are described in the following sections.

3.2.2 Initialization by the Previous Images

The images we process capture the evolution of cells. We have a sequence of images,

each is taken two minutes after the previous one. Therefore we can assume that the
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Figure 6: Result of the original initialization using manually optimized parameters.

consecutive images do not differ significantly. As an initialization of an image, we can

take the resulting level set function of the segmentation of the previous image. The

level set function can be used unmodified, or we can keep the zero level curve and set

the region Ω0 as the interior of the cells and use the previous method of initialization,

i.e. set the interior as -1 and the exterior as 1. In the experiments we made, there is

no significant difference between the results using modified or unmodified level set

function.

For the following numerical experiments, we used the result in Figure 6 for the

initialization. Each of the next four images was initialized with the same initial

function, derived from the first image, to better understand the influence of the

movement of the cell cluster. The initial level set function was set as a piecewise

constant function described in the previous paragraph.

The parameters in the experiment of Figure 7 are the same as we used for com-

puting Figure 6. Although the iteration process converges after about 200 iterations,

which is about eight times faster than with the previous initialization, the results

are not precise. The problem is that a part of the initial curve lays inside the cell

cluster. We assume that the initial curve would be either inside or outside of the

cell, or generally of the object we seek. According to the position of the initial zero

curve, we set the sign of the parameter of the area term (21). Since the initial zero

curve lays partially inside the cluster, during the evolution the process captures the
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Figure 7: Initialization by the result of the first image using the same parameters as
were used in Figure 6.

interior edges and mistakenly labels the cell interior as a background.

To avoid the interior curves, we set new parameters, especially magnifying the

variance term (37). The results are shown in Figure 8. The curve converges after

about 200 iterations but we let the iteration process compute at least 1000 iterations

to assure that the interior curves do not appear later in the process. Although there

are no interior curves, some parts of the cells are not included in the result and

therefore the result is not accurate enough.

If we use the unchanged zero level curve of the result as an initialization for the

consecutive image, where the cells moved, it is typical that part of the zero curve

would be inside the cell region and part outside of it. We suggest dilation as an
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Figure 8: Initialization by the result of the first image using new parameters magni-
fying the variance term.

26



option of a numerical remedy. Dilation is a process that enlarges an object [13]. Thus

the initial curve would be outside of the cell and we would avoid the encountered

problems. However, incorporating dilation into the algorithm would cause other

problems with implementation. Therefore we present a simpler approach described

in the next section.

3.2.3 Initialization by Variance

The region based initialization proposed by [8] and described in Section 3.2.1 is

flexible for various applications. If we had an approximation of the regions of interest,

we could use this approximation to construct the initial level set function φ0.

The method to roughly separate the objects from the background could be thresh-

olding. Thresholding is the simplest segmentation method.

Definition. Thresholding is a function T : R2 → R defined as

T (c(i,j)) =

0, for c(i,j) < p,

255, for c(i,j) ≥ p,
(41)

where c(i,j) is the value in the pixel (i, j) and p is a given threshold.

The value c(i,j) is usually the intensity or colour because we can assume that the

objects are of a different colour than the background. Thresholding thus replaces

each pixel with either a black or white pixel depending on whether the intensity is

greater or smaller than the threshold p.

We assume the image background to have constant intensity with some insignif-

icant perturbations caused by noise. However, the cell centers have similar intensity

as the background. Therefore, thresholding of the original image would not be useful

as it would label the cell centers as the background.

The method we suggest utilizes the same property as when we introduced the

variance term (37), i.e. the assumption that the background has significantly smaller

variance than the cells.

For each pixel we compute the variance of its neighborhood and then we use

thresholding on the image of variance. As a result we obtain a black and white

image which is then used as the initialization, the level set function φ in the cell

regions is set to -1, in the background it is set to 1.
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Figure 9: Initialization by thresholding the image of variance. Threshold p = 2.2
was found manually.

As an example, we use the same image and the same parameters as in Section

3.2.1 with an initialization given by thresholding. The result is shown in Figure 9.

We obtain a similar result as in Figure 6 but it only takes 20 iterations, which is

more than 80 times less than with the original initialization.

The second image in Figure 9 shows the binary image obtained by thresholding

with the threshold p = 2.2. Although the initial level set function φ0 has many zero

level curves for only one cell cluster, due to the formulation of the gradient flow the

small curves disappear after about 15 iterations.

3.3 Automatic Optimization of the Weighting Parameters

The sequences of images of cells we process may contain thousands of images. The

cells may grow, proliferate or die and the images in the beginning of a sequence may

have a completely different structure than the images by the end of the sequence.

Figure 10 shows the first and the last image of the sequence we will process. In the

first image, there are isolated cells but in the last image the background is almost

completely covered by cells. Therefore, it is challenging to find universal parameters

for all images in the sequence.

The parameters can be selected manually, based on an observation of numerical

experiments to achieve the best possible accuracy and speed of the evolution. We
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Figure 10: The difference between the first and the last image of a sequence of 2161
images. There are isolated cells on a background in the first image while the majority
of the last image is covered with cells.

29



used manual optimization of the parameters in our initial experiments. However, this

method of optimizing can be a tedious work. Therefore, we used several automatic

methods of optimization in MATLAB to see whether the automatic methods are

applicable for our problem.

The most accurate results were computed by the trust-region-reflective method,

see [3]. The method minimizes the difference between the results of the segmentation

and the ground truth, i.e. images segmented manually by specialists.

In the next sections we present numerical experiments on selected images from

a sequence of 2161 images. We applied the automatic optimization only on the

first image of the sequence and then we used the resulting parameters for all of the

remaining images. The values of the parameters we used in our experiments are

µ = 0.2, λ = 479.7927, α = 0.1114, β = 0.0062, ρ = 0.0175, p = 2.0439, (42)

where the first five parameters are the weighting parameters in the gradient flow (38)

and the last parameter is the threshold, see (41).

30



4 Numerical Experiments

This chapter adresses analysis of numerical experiments on the real data. The numer-

ical experiments and visualizations of the results were performed using MATLAB.

We used the parameters described in (42).

Our images come from The laboratory of tissue culture, Institute of complex

systems, Faculty of Fisheries and Protection of Waters, University of South Bohemia

in České Budějovice. We chose 50 images from a sequence of over 2000 images. The

results from our method are compared with manually segmented images, which are

taken as the ground truth. We use the F1 score for evaluation. Our results are

also compared with the initialization by variance and with the results of Soukup’s

algorithm described in [19].

However, the manual evaluation depends on the subjective perspective. For the

experiments in [19], a sequence of images was manually processed by two different

laboratory technicians. The similarity of the manual segmentation was only 94.8%,

which means, that 94.8% of pixels was assigned to the same category, i.e. either as

the area of cells or background. Our images come from the same laboratory as in

[19], so we can assume similar accuracy.

4.1 Number of iterations

As in every iteration process, we need to specify a stopping criteria or a number of

iterations. If the exact solution was found, the evolution would stop which means

that the terms in gradient flow (38) would be zero.

We will analyze the change of each term with the number of iterations. We show

the values of some of the terms from the gradient flow in Figure 11. The horizontal

axis represents the number of iterations, the vertical axis represents the value of the

31



Figure 11: The value of the terms in the gradient flow. The horizontal axis represents
the number of iterations, the vertical axis represents terms in the gradient flow.

term in the gradient flow. The image we process in this Figure is the first image

from the sequence, it is shown in Figure 10.

We can see that the terms are almost a constant zero after about 10 or 15 iter-

ations, so the minimum number of iterations for the method to converge appears to

be 15 iterations.

In the experiments, we used a various number of iterations - from 10 up to 5000

iterations. In the next section we will present the results after 15-120 iterations.

4.2 Definition of the F1 score

We will use the F1 score for evaluation of the results. The F1 score considers precision

and recall of the test to compute its relevance. In the image segmentation context,

precision and recall are defined in the terms of a set of retrieved pixels and a set of

relevant pixels, which are in our case the pixels of cells. Precision is the fraction of
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retrieved pixels that are relevant and recall is the fraction of relevant pixels that are

retrieved.

Let us define a confusion matrix in Table 1. Confusion matrix divides the image

pixels into four sets depending on the outcome of the algorithm comparing to the

ground truth. We will use the terms in confusion matrix in the following definition

of precision, recall and F1 score.

Ground truth
Cell Background

Algorithm outcome
Cell True positive (TP) False positive (FP)

Background False negative (FN) True negative (TN)

Table 1: Confusion matrix

Definition. Precision p:

p =
TP

TP + FP
.

Recall r:

r =
TP

TP + FN
.

F1 score:

F1 = 2 · p · r
p+ r

. (43)

The F1 score is the harmonic mean of precision and recall. The best results take

the value 1 while the worst results has the score 0.

4.3 Results

The sequence of images we are processing has 2161 images. Since we need manually

segmented images from specialists as the ground truth and since it is time consuming

to get them, we chose 50 representative images from this sequence to analyze. The

first image of the sequence was used for optimization of parameters. The remaining

images were segmented by our algorithm and compared with the initialization by

variance and also with results arising from the algorithm by Soukup, described in [19].

Threshold in the initialization by variance was chosen as the result of the automatic

optimization (42). For the Soukup’s algorithm we used its standard parameters. The

results were compared using the F1 score (43).
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F1 of our algorithm F1 of Soukup’s algorithm F1 of initialization

15 iterations 0.8717 0.8655 0.8390
30 iterations 0.8767
80 iterations 0.8835
100 iterations 0.8842
120 iterations 0.8842

Table 2: Comparison of the F1 scores

One problem of our images is the text at the corners of the images. The text

specifies each microscopical image and the method finds the edges and evaluates the

text as a cell. We therefore evaluate the F1 score on cut images without the text at

the corners. The area we cut out is 2% of the image.

As described above, we used manually segmented images as the ground truth.

The ground truth was used for computing the F1 score for each of the three groups

of results: our algorithm, Soukup’s algorithm and the initialization by variance. We

then computed the mean value of the F1 scores of the 49 images for each algorithm

which is shown in Table 2. We used different number of iterations for our algorithm

which is also presented in Table 2.

Table 2 shows that our initialization by variance is already very efficient as its

F1 score is 0.8390. Therefore with only 15 iterations we get the F1 score of 0.8717

which is higher than the F1 score of 0.8655 of Soukup’s algorithm. From Table 2 we

can see that the F1 score of our algorithm grows with the number of iterations until

it reaches 100 iterations. The F1 score of our algorithm after 100 iterations is 0.8842

which is the same score as using 120 iterations. We can assume the convergence of

the algorithm after 100 iterations. The segmentation using 100 iterations lasts less

than 100 sec.

We show some of the resulting images segmented by our algorithm in Figures

12-16. The first three figures show images from the beginning of the sequence we

process. The cells on these images are still isolated and the background covers

majority of the image. The red curve is the zero level of the level set function. After

15 iterations some interiors of the cells are assigned as the background, therefore

we show the results using 100 iterations, where this problem is solved due to the

evolution and the variance term. After 100 iterations the curve is also smoother

because of the length and area terms. The last two figures show images from the

end of the sequence. These images are covered mostly by cells. The interior of the

closed curves in Figures 15 and 16 thus represent the background and the exterior is

the area of cells.
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Figure 12: The segmentation of the 70th image of the sequence. The first image
shows the result using 15 iterations, the second one is the result using 100 iterations.

35



Figure 13: The segmentation of the 227th image of the sequence. The first image
shows the result using 15 iterations, the second one is the result using 100 iterations.
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Figure 14: The segmentation of the 904th image of the sequence. The first image
shows the result using 15 iterations, the second one is the result using 100 iterations.
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Figure 15: The segmentation of the 1553rd image of the sequence. The first image
shows the result using 15 iterations, the second one is the result using 100 iterations.
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Figure 16: The segmentation of the last image of the sequence. The first image
shows the result using 15 iterations, the second one is the result using 120 iterations.
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5 Conclusion

In this thesis, we studied the level set methods and its application in the research

of new materials for implants. We presented a mathematical background for the

level set methods and we introduced a new method of segmentation. We processed

microscopic images of cancer cells and the results were compared with the manual

segmentation.

The algorithm we proposed is based on the variational formulation of the level

set methods, which is a problem of minimizing a functional. The method is based

on the functional presented in [8], which describes a level set function. The level set

function implicitly describes an interface dividing an image into the background and

cells. The functional is minimized by a gradient flow. We introduced new terms in

the gradient flow to achieve higher accuracy and faster convergence.

We introduced a region-based initialization. The initialization is computed by

thresholding the image of local variance. This initialization significantly reduces the

necessary number of iterations for the method to converge.

We used a finite difference scheme for discretization. Instead of using standard

MATLAB functions for evaluation of the gradient and Laplace operator, we used

functions written in the C programming language compiled to MATLAB, which are

about three times faster.

The parameters were optimized using automatic optimizing algorithms in MAT-

LAB.

We compared our results with manually processed images and compared its F1

scores with another algorithms. The results of our algorithm are better than the

compared results.
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